Mercurial > hg > Members > kono > Proof > category
changeset 437:9be298a02c35
add rest of equation
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 29 Aug 2016 19:21:40 +0900 |
parents | ef37decef1ca |
children | ce9edc8088e8 |
files | freyd.agda |
diffstat | 1 files changed, 23 insertions(+), 6 deletions(-) [+] |
line wrap: on
line diff
--- a/freyd.agda Mon Aug 29 17:02:03 2016 +0900 +++ b/freyd.agda Mon Aug 29 19:21:40 2016 +0900 @@ -53,14 +53,31 @@ initial = initialArrow ; uniqueness = λ a f → lemma1 a f } where + f : {a : Obj A} -> Hom A a0 (FObj F (preinitialObj PI {a} ) ) + f {a} = limit (lim F {FObj F (preinitialObj PI {a} )} {u (FObj F (preinitialObj PI))} ) a0 (u a0 ) initialArrow : ∀( a : Obj A ) → Hom A a0 a - initialArrow a = A [ preinitialArrow PI {a} o limit (lim F {FObj F (preinitialObj PI)} {u (FObj F (preinitialObj PI))} ) a0 (u a0 ) ] - equ-fi : { a c : Obj A} -> { p : Hom A c a0 } -> {f : Hom A a0 a} -> Equalizer A p ( A [ preinitialArrow PI {a} o limit (lim F) a0 (u a0) ] ) f - equ-fi {a} {c} {p} {f} = equ ( A [ preinitialArrow PI {a} o limit (lim F) a0 (u a0) ] ) f + initialArrow a = A [ preinitialArrow PI {a} o f ] + limit-u : Limit A A F a0 (u a0) + limit-u = lim F {a0} {u a0} + equ-fi : { a c : Obj A} -> { p : Hom A c a0 } -> {f' : Hom A a0 a} -> + Equalizer A p ( A [ preinitialArrow PI {a} o f ] ) f' + equ-fi {a} {c} {p} {f'} = equ ( A [ preinitialArrow PI {a} o limit (lim F) a0 (u a0) ] ) f' + e=id : (e : Hom A a0 a0) -> ( {c : Obj A} -> A [ A [ TMap (u a0) c o e ] ≈ TMap (u a0) c ] ) -> A [ e ≈ id1 A a0 ] + e=id e uce=uc = let open ≈-Reasoning (A) in + begin + e + ≈↑⟨ limit-uniqueness limit-u {a0} {u a0} {e} ( \{i} -> uce=uc ) ⟩ + limit limit-u a0 (u a0) + ≈⟨ limit-uniqueness limit-u {a0} {u a0} {id1 A a0} ( \{i} -> idR ) ⟩ + id1 A a0 + ∎ open Equalizer - kfuc=1 : {k1 c : Obj A} -> A [ A [ equalizer (equ-fi {a0} {k1} {{!!}} {{!!}} ) o + kfuc=uc : {c k1 : Obj A} -> A [ A [ TMap (u a0) c o A [ equalizer (equ-fi {a0} {k1} {{!!}} {{!!}} ) o + A [ preinitialArrow PI {k1} o TMap (u a0) (preinitialObj PI) ] ] ] ≈ TMap (u a0) c ] + kfuc=uc {k1} {c} = {!!} + kfuc=1 : {k1 : Obj A} -> A [ A [ equalizer (equ-fi {a0} {k1} {{!!}} {{!!}} ) o A [ preinitialArrow PI {k1} o TMap (u a0) (preinitialObj PI) ] ] ≈ id1 A a0 ] - kfuc=1 {k1} {c} = {!!} + kfuc=1 {k1} = {!!} -- if equalizer has right inverse, f = g lemma2 : (a b c : Obj A) ( f g : Hom A a b ) (e : Hom A c a ) (e' : Hom A a c ) ( equ : Equalizer A e f g ) (inv-e : A [ A [ e o e' ] ≈ id1 A a ] ) -> A [ f ≈ g ] @@ -90,7 +107,7 @@ initialArrow a ≈⟨⟩ preinitialArrow PI {a} o limit (lim F) a0 (u a0) - ≈⟨ lemma2 a0 a {!!} (A [ preinitialArrow PI {a} o limit (lim F) a0 (u a0) ]) f {!!} {!!} {!!} (kfuc=1 {{!!}} {{!!}} ) ⟩ + ≈⟨ lemma2 a0 a {!!} (A [ preinitialArrow PI {a} o limit (lim F) a0 (u a0) ]) f {!!} {!!} {!!} (kfuc=1 {{!!}} ) ⟩ f ∎ )