Mercurial > hg > Members > kono > Proof > category
changeset 438:ce9edc8088e8
clean up
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 30 Aug 2016 00:19:10 +0900 |
parents | 9be298a02c35 |
children | bc0682b86b91 |
files | freyd.agda |
diffstat | 1 files changed, 12 insertions(+), 10 deletions(-) [+] |
line wrap: on
line diff
--- a/freyd.agda Mon Aug 29 19:21:40 2016 +0900 +++ b/freyd.agda Tue Aug 30 00:19:10 2016 +0900 @@ -62,8 +62,8 @@ equ-fi : { a c : Obj A} -> { p : Hom A c a0 } -> {f' : Hom A a0 a} -> Equalizer A p ( A [ preinitialArrow PI {a} o f ] ) f' equ-fi {a} {c} {p} {f'} = equ ( A [ preinitialArrow PI {a} o limit (lim F) a0 (u a0) ] ) f' - e=id : (e : Hom A a0 a0) -> ( {c : Obj A} -> A [ A [ TMap (u a0) c o e ] ≈ TMap (u a0) c ] ) -> A [ e ≈ id1 A a0 ] - e=id e uce=uc = let open ≈-Reasoning (A) in + e=id : {e : Hom A a0 a0} -> ( {c : Obj A} -> A [ A [ TMap (u a0) c o e ] ≈ TMap (u a0) c ] ) -> A [ e ≈ id1 A a0 ] + e=id {e} uce=uc = let open ≈-Reasoning (A) in begin e ≈↑⟨ limit-uniqueness limit-u {a0} {u a0} {e} ( \{i} -> uce=uc ) ⟩ @@ -72,16 +72,18 @@ id1 A a0 ∎ open Equalizer - kfuc=uc : {c k1 : Obj A} -> A [ A [ TMap (u a0) c o A [ equalizer (equ-fi {a0} {k1} {{!!}} {{!!}} ) o - A [ preinitialArrow PI {k1} o TMap (u a0) (preinitialObj PI) ] ] ] ≈ TMap (u a0) c ] + kfuc=uc : {c k1 : Obj A} -> A [ A [ TMap (u a0) c o + A [ equalizer (equ-fi {a0} {k1} {{!!}} {{!!}} ) o A [ preinitialArrow PI {k1} o TMap (u a0) (preinitialObj PI) ] ] ] + ≈ TMap (u a0) c ] kfuc=uc {k1} {c} = {!!} kfuc=1 : {k1 : Obj A} -> A [ A [ equalizer (equ-fi {a0} {k1} {{!!}} {{!!}} ) o A [ preinitialArrow PI {k1} o TMap (u a0) (preinitialObj PI) ] ] ≈ id1 A a0 ] - kfuc=1 {k1} = {!!} + kfuc=1 {k1} = e=id kfuc=uc -- if equalizer has right inverse, f = g - lemma2 : (a b c : Obj A) ( f g : Hom A a b ) (e : Hom A c a ) (e' : Hom A a c ) ( equ : Equalizer A e f g ) (inv-e : A [ A [ e o e' ] ≈ id1 A a ] ) + lemma2 : (a b : Obj A) {c : Obj A} ( f g : Hom A a b ) + {e : Hom A c a } {e' : Hom A a c } ( equ : Equalizer A e f g ) (inv-e : A [ A [ e o e' ] ≈ id1 A a ] ) -> A [ f ≈ g ] - lemma2 a b c f g e e' equ inv-e = let open ≈-Reasoning (A) in + lemma2 a b {c} f g {e} {e'} equ inv-e = let open ≈-Reasoning (A) in let open Equalizer in begin f @@ -101,13 +103,13 @@ g ∎ lemma1 : (a : Obj A) (f : Hom A a0 a) → A [ f ≈ initialArrow a ] - lemma1 a f = let open ≈-Reasoning (A) in + lemma1 a f' = let open ≈-Reasoning (A) in sym ( begin initialArrow a ≈⟨⟩ preinitialArrow PI {a} o limit (lim F) a0 (u a0) - ≈⟨ lemma2 a0 a {!!} (A [ preinitialArrow PI {a} o limit (lim F) a0 (u a0) ]) f {!!} {!!} {!!} (kfuc=1 {{!!}} ) ⟩ - f + ≈⟨ lemma2 a0 a (A [ preinitialArrow PI {a} o limit (lim F) a0 (u a0) ]) f' equ-fi (kfuc=1 {a} ) ⟩ + f' ∎ )