Mercurial > hg > Members > kono > Proof > category
comparison equalizer.agda @ 228:ff596cff8183
fix
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 05 Sep 2013 22:35:31 +0900 |
parents | 591efd381c82 |
children | 68b2681ea9df |
comparison
equal
deleted
inserted
replaced
227:591efd381c82 | 228:ff596cff8183 |
---|---|
392 | 392 |
393 | 393 |
394 c-iso-l : { c c' a b : Obj A } {f g : Hom A a b } → ( eqa : Equalizer A {c} f g) → ( eqa' : Equalizer A {c'} f g ) | 394 c-iso-l : { c c' a b : Obj A } {f g : Hom A a b } → ( eqa : Equalizer A {c} f g) → ( eqa' : Equalizer A {c'} f g ) |
395 → (eff' : Equalizer A {c'} f f ) → (eff : Equalizer A {c} f f ) | 395 → (eff' : Equalizer A {c'} f f ) → (eff : Equalizer A {c} f f ) |
396 → Hom A c c' | 396 → Hom A c c' |
397 c-iso-l eqa eqa' eff' eff = let open ≈-Reasoning (A) in k eff' (e eqa) refl-hom | 397 c-iso-l {c} {c'} eqa eqa' eff' eff = let open ≈-Reasoning (A) in k eff' (A [ e eqa o id1 A c ]) refl-hom |
398 | 398 |
399 c-iso-r : { c c' a b : Obj A } {f g : Hom A a b } → ( eqa : Equalizer A {c} f g) → ( eqa' : Equalizer A {c'} f g ) | 399 c-iso-r : { c c' a b : Obj A } {f g : Hom A a b } → ( eqa : Equalizer A {c} f g) → ( eqa' : Equalizer A {c'} f g ) |
400 → (eff' : Equalizer A {c'} f f ) → (eff : Equalizer A {c} f f ) | 400 → (eff' : Equalizer A {c'} f f ) → (eff : Equalizer A {c} f f ) |
401 → Hom A c' c | 401 → Hom A c' c |
402 c-iso-r eqa eqa' eff' eff = let open ≈-Reasoning (A) in k eff (e eqa') refl-hom | 402 c-iso-r {c} {c'} eqa eqa' eff' eff = let open ≈-Reasoning (A) in k eff (A [ e eqa' o id1 A c' ]) refl-hom |
403 | 403 |
404 c-iso-1 : { c c' a b : Obj A } {f g : Hom A a b } → ( eqa : Equalizer A {c} f g) → ( eqa' : Equalizer A {c'} f g ) | 404 c-iso-1 : { c c' a b : Obj A } {f g : Hom A a b } → ( eqa : Equalizer A {c} f g) → ( eqa' : Equalizer A {c'} f g ) |
405 → (eff' : Equalizer A {c'} f f ) → (eff : Equalizer A {c} f f ) | 405 → (eff' : Equalizer A {c'} f f ) → (eff : Equalizer A {c} f f ) |
406 → A [ A [ e (eefeg eqa') o k (eefeg eqa') (id1 A c') (f1=g1 (fe=ge eqa') (id1 A c')) ] ≈ id1 A c' ] | 406 → A [ A [ e (eefeg eqa') o k (eefeg eqa') (id1 A c') (f1=g1 (fe=ge eqa') (id1 A c')) ] ≈ id1 A c' ] |
407 c-iso-1 {c} {c'} {a} {b} {f} {g} eqa eqa' eff' eff = let open ≈-Reasoning (A) in begin | 407 c-iso-1 {c} {c'} {a} {b} {f} {g} eqa eqa' eff' eff = let open ≈-Reasoning (A) in begin |
408 e (eefeg eqa') o k (eefeg eqa') (id1 A c') (f1=g1 (fe=ge eqa') (id1 A c')) | 408 e (eefeg eqa') o k (eefeg eqa') (id1 A c') (f1=g1 (fe=ge eqa') (id1 A c')) |
409 ≈⟨ {!!} ⟩ | |
410 e (eefeg eqa') o k (eefeg eqa') (id1 A c') (f1=g1 (fe=ge eqa') (id1 A c')) | |
411 ≈⟨ ek=h ( eefeg eqa' )⟩ | 409 ≈⟨ ek=h ( eefeg eqa' )⟩ |
410 id1 A c' | |
411 ∎ | |
412 | |
413 c-iso-2 : { c c' a b : Obj A } {f g : Hom A a b } → ( eqa : Equalizer A {c} f g) → ( eqa' : Equalizer A {c'} f g ) | |
414 → (eff' : Equalizer A {c'} f f ) → (eff : Equalizer A {c} f f ) | |
415 → A [ k eqa' ( A [ e eqa' o id1 A c' ] ) (f1=gh (fe=ge eqa' )) ≈ id1 A c' ] | |
416 c-iso-2 {c} {c'} {a} {b} {f} {g} eqa eqa' eff' eff = let open ≈-Reasoning (A) in begin | |
417 k eqa' ( A [ e eqa' o id1 A c' ] ) (f1=gh (fe=ge eqa' ) ) | |
418 ≈⟨ uniqueness eqa' refl-hom ⟩ | |
419 id1 A c' | |
420 ∎ | |
421 | |
422 c-iso-3 : { c c' a b : Obj A } {f g : Hom A a b } → ( eqa : Equalizer A {c} f g) → ( eqa' : Equalizer A {c'} f g ) | |
423 → (eff' : Equalizer A {c'} f f ) → (eff : Equalizer A {c} f f ) | |
424 → A [ k eff' ( A [ e eff' o id1 A c' ] ) (f1=gh (fe=ge eff')) ≈ id1 A c' ] | |
425 c-iso-3 {c} {c'} {a} {b} {f} {g} eqa eqa' eff' eff = let open ≈-Reasoning (A) in begin | |
426 k eff' ( A [ e eff' o id1 A c' ] ) (f1=gh (fe=ge eff')) | |
427 ≈⟨ uniqueness eff' refl-hom ⟩ | |
412 id1 A c' | 428 id1 A c' |
413 ∎ | 429 ∎ |
414 | 430 |
415 -- e k e k = 1c e e = e -> e = 1c? | 431 -- e k e k = 1c e e = e -> e = 1c? |
416 -- k e k e = 1c' ? | 432 -- k e k e = 1c' ? |
420 → (eff' : Equalizer A {c'} f f ) → (eff : Equalizer A {c} f f ) | 436 → (eff' : Equalizer A {c'} f f ) → (eff : Equalizer A {c} f f ) |
421 → A [ A [ c-iso-l eqa eqa' eff' eff o c-iso-r eqa eqa' eff' eff ] ≈ id1 A c' ] | 437 → A [ A [ c-iso-l eqa eqa' eff' eff o c-iso-r eqa eqa' eff' eff ] ≈ id1 A c' ] |
422 c-iso {c} {c'} {a} {b} {f} {g} eqa eqa' eff' eff = let open ≈-Reasoning (A) in begin | 438 c-iso {c} {c'} {a} {b} {f} {g} eqa eqa' eff' eff = let open ≈-Reasoning (A) in begin |
423 c-iso-l eqa eqa' eff' eff o c-iso-r eqa eqa' eff' eff | 439 c-iso-l eqa eqa' eff' eff o c-iso-r eqa eqa' eff' eff |
424 ≈⟨⟩ | 440 ≈⟨⟩ |
425 k eff' (e eqa) refl-hom o k eff (e eqa') refl-hom | 441 k eff' (e eqa o id1 A c) refl-hom o k eff (e eqa' o id1 A c') refl-hom |
442 ≈⟨ car ( uniqueness eff' ( begin | |
443 e eff' o k eff' {!!} {!!} | |
444 ≈⟨ {!!} ⟩ | |
445 e eqa o id1 A c | |
446 ∎ )) ⟩ | |
447 {!!} o k eff (e eqa' o id1 A c') refl-hom | |
426 ≈⟨ {!!} ⟩ | 448 ≈⟨ {!!} ⟩ |
427 id1 A c' | 449 id1 A c' |
428 ∎ | 450 ∎ |
429 | 451 |
430 | 452 |