view equalizer.agda @ 228:ff596cff8183

fix
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Thu, 05 Sep 2013 22:35:31 +0900
parents 591efd381c82
children 68b2681ea9df
line wrap: on
line source

---
--
--  Equalizer
--
--         e             f
--    c  --------> a ----------> b
--    ^        .     ---------->
--    |      .            g
--    |k   .                
--    |  . h              
--    d 
--
--                        Shinji KONO <kono@ie.u-ryukyu.ac.jp>
----

open import Category -- https://github.com/konn/category-agda                                                                                     
open import Level
module equalizer { c₁ c₂ ℓ : Level} { A : Category c₁ c₂ ℓ } where

open import HomReasoning
open import cat-utility

record Equalizer { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ )  {c a b : Obj A} (f g : Hom A a b)  : Set  (ℓ ⊔ (c₁ ⊔ c₂)) where
   field
      e : Hom A c a 
      fe=ge : A [ A [ f o e ] ≈ A [ g o e ] ]
      k : {d : Obj A}  (h : Hom A d a) → A [ A [ f  o  h ] ≈ A [ g  o h ] ] → Hom A d c
      ek=h : {d : Obj A}  → ∀ {h : Hom A d a} →  {eq : A [ A [ f  o  h ] ≈ A [ g  o h ] ] } →  A [ A [ e  o k {d} h eq ] ≈ h ]
      uniqueness : {d : Obj A} →  ∀ {h : Hom A d a} →  {eq : A [ A [ f  o  h ] ≈ A [ g  o h ] ] } →  {k' : Hom A d c } → 
              A [ A [ e  o k' ] ≈ h ] → A [ k {d} h eq  ≈ k' ]
   equalizer : Hom A c a
   equalizer = e

-- 
-- Flat Equational Definition of Equalizer
-- 
record Burroni { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ )  {c a b : Obj A} (f g : Hom A a b) : Set  (ℓ ⊔ (c₁ ⊔ c₂)) where
   field
      α : {a b c : Obj A } → (f : Hom A a b) → (g : Hom A a b ) →  Hom A c a
      γ : {a b c d : Obj A } → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) →  Hom A d c
      δ : {a b c : Obj A } → (f : Hom A a b) → Hom A a c 
      b1 : A [ A [ f  o α {a} {b} {a}  f g ] ≈ A [ g  o α f g ] ]
      b2 :  {d : Obj A } → {h : Hom A d a } → A [ A [ ( α f g) o (γ {a} {b} {c} f g h) ] ≈ A [ h  o α (A [ f o h ]) (A [ g o h ]) ] ]
      b3 :  A [ A [ α f f o δ {a} {b} {a} f ] ≈ id1 A a ]
      -- b4 :  {c d : Obj A } {k : Hom A c a} → A [ β f g ( A [ α f g o  k ] ) ≈ k ]
      b4 :  {d : Obj A } {k : Hom A d c} → A [ A [ γ {a} {b} {c} {d} f g ( A [ α {a} {b} {c} f g o k ] ) o δ (A [ f o A [ α f g o  k ] ] ) ] ≈ k ]  
   --  A [ α f g o β f g h ] ≈ h
   β : { d e a b : Obj A}  → (f : Hom A a b) → (g : Hom A a b ) →  (h : Hom A d a ) → Hom A d c
   β {d} {e} {a} {b} f g h =  A [ γ {a} {b} {c} f g h o δ (A [ f o h ]) ] 

open Equalizer

open Burroni

--
-- Some obvious conditions for k  (fe = ge) → ( fh = gh )
--

f1=g1 : { a b c : Obj A } {f g : Hom A a b } → (eq : A [ f ≈ g ] ) → (h : Hom A c a) →  A [ A [ f o h ] ≈ A [ g o h ]  ]
f1=g1 eq h = let open ≈-Reasoning (A) in (resp refl-hom eq )

f1=f1 : { a b : Obj A } (f : Hom A a b ) →  A [ A [ f o (id1 A a)  ] ≈ A [ f o (id1 A a)  ]  ]
f1=f1  f = let open ≈-Reasoning (A) in refl-hom 

f1=gh : { a b c d : Obj A } {f g : Hom A a b } → { e : Hom A c a } → { h : Hom A d c } →
       (eq : A [ A [ f  o e ] ≈ A [ g  o e ] ] ) → A [ A [ f o A [ e o h ] ] ≈ A [ g o A [ e  o h ]  ] ]
f1=gh {a} {b} {c} {d} {f} {g} {e} {h} eq = let open ≈-Reasoning (A) in 
             begin
                  f o ( e  o h )
             ≈⟨ assoc  ⟩
                  (f o  e ) o h 
             ≈⟨ car eq  ⟩
                  (g o  e ) o h 
             ≈↑⟨ assoc  ⟩
                  g o ( e  o h )


--
--  For e f f, we need e eqa = id1 A a, but it is equal to say k eqa (id a) is id
--
--     Equalizer has free choice of c up to isomorphism, we cannot prove eqa = id a

equalizer-eq-k  : { a b : Obj A } {f g : Hom A a b } → (eq : A [ f ≈ g ] ) → ( eqa : Equalizer A {a} f g) → 
      A [ e eqa ≈ id1 A a ] →
      A [ k eqa (id1 A a) (f1=g1 eq (id1 A a)) ≈ id1 A a ] 
equalizer-eq-k {a} {b} {f} {g} eq eqa e=1 =  let open ≈-Reasoning (A) in
             begin
                   k eqa (id1 A a) (f1=g1 eq (id1 A a))     
             ≈⟨ uniqueness eqa ( begin
                    e eqa o id1 A a
                 ≈⟨ idR ⟩
                    e eqa 
                 ≈⟨ e=1 ⟩
                    id1 A a
             ∎ )⟩
                   id1 A a


equalizer-eq-e  : { a b : Obj A } {f g : Hom A a b } → ( eqa : Equalizer A {a} f g) → (eq : A [ f ≈ g ] ) → 
      A [ k eqa (id1 A a) (f1=g1 eq (id1 A a)) ≈ id1 A a ] →
      A [ e eqa ≈ id1 A a ] 
equalizer-eq-e {a} {b} {f} {g} eqa eq k=1 =  let open ≈-Reasoning (A) in
             begin
                   e eqa 
             ≈↑⟨ idR ⟩
                   e eqa  o id1 A a
             ≈↑⟨ cdr k=1 ⟩
                   e eqa  o k eqa (id1 A a) (f1=g1 eq (id1 A a))
             ≈⟨ ek=h eqa ⟩
                   id1 A a


--
--
--   An isomorphic element c' of c makes another equalizer
--
--           e eqa f g        f 
--         c ----------> a ------->b
--        |^ 
--        || 
--    h   || h-1
--        v| 
--         c'              

equalizer+iso : {a b c c' : Obj A } {f g : Hom A a b } ( eqa : Equalizer A {c} f g) → (h-1 : Hom A c' c ) → (h : Hom A c c' ) →
                A [ A [ h-1  o h ]  ≈ id1 A c ] → A [ A [ h  o h-1 ]  ≈ id1 A c' ]
           → Equalizer A {c'} f g 
equalizer+iso  {a} {b} {c} {c'} {f} {g} eqa h-1 h h-1-id h-id =  record {
      e = A [  e eqa o h-1 ] ;
      fe=ge = fe=ge1 ;
      k = λ j eq → A [ h o k eqa j eq ] ;
      ek=h = ek=h1 ; 
      uniqueness = uniqueness1
  } where
      fe=ge1 :  A [ A [ f o A [  e eqa  o h-1 ] ] ≈ A [ g o A [  e eqa o h-1 ] ] ]
      fe=ge1 = let open ≈-Reasoning (A) in 
             begin
                  f o ( e eqa o h-1  )
             ≈⟨ assoc  ⟩
                  (f o e eqa ) o h-1
             ≈⟨ car (fe=ge eqa) ⟩
                  (g o e eqa ) o h-1
             ≈↑⟨ assoc ⟩
                  g o ( e eqa  o h-1 )

      ek=h1 :   {d : Obj A} {j : Hom A d a} {eq : A [ A [ f o j ] ≈ A [ g o j ] ]} →
                A [ A [ A [ e eqa o h-1 ] o A [ h o k eqa j eq ] ] ≈ j ]
      ek=h1 {d} {j} {eq} =  let open ≈-Reasoning (A) in
             begin
                   (e eqa o h-1 ) o ( h o k eqa j eq )
             ≈↑⟨ assoc ⟩
                   e eqa o ( h-1  o ( h o k eqa j eq ))
             ≈⟨ cdr assoc ⟩
                   e eqa o (( h-1  o  h ) o k eqa j eq )
             ≈⟨ cdr (car (h-1-id )) ⟩
                   e eqa o (id1 A c o k eqa j eq )
             ≈⟨ cdr idL ⟩
                   e eqa o (k eqa j eq )
             ≈⟨ ek=h eqa ⟩
                   j

      uniqueness1 : {d : Obj A} {h' : Hom A d a} {eq : A [ A [ f o h' ] ≈ A [ g o h' ] ]} {j : Hom A d c'} →
                A [ A [ A [ e eqa o h-1 ] o j ] ≈ h' ] →
                A [ A [ h o k eqa h' eq ] ≈ j ]
      uniqueness1 {d} {h'} {eq} {j} ej=h  =  let open ≈-Reasoning (A) in
             begin
                   h o k eqa h' eq
             ≈⟨ cdr (uniqueness eqa (
                 begin
                    e eqa  o ( h-1 o j )
                 ≈⟨ assoc ⟩
                    (e eqa  o  h-1 ) o j 
                 ≈⟨ ej=h ⟩
                    h'

             )) ⟩
                   h  o ( h-1 o j )
             ≈⟨ assoc  ⟩
                   (h  o  h-1 ) o j 
             ≈⟨ car h-id ⟩
                   id1 A c' o j 
             ≈⟨ idL ⟩
                   j


--  If we have equalizer f g, e fh gh is also equalizer if we have isomorphic pair (same as above)
--
--           e eqa f g        f
--         c ----------> a ------->b
--         ^ ---> d ---> 
--         |  i      h
--        j|    k' (d' → d)
--         |    k  (d' → a)
--         d'            

equalizer+h : {a b c d : Obj A } {f g : Hom A a b } ( eqa : Equalizer A {c} f g) (i : Hom A c d ) → (h : Hom A d a ) → (h-1 : Hom A a d ) 
           → A [ A [ h  o i ]  ≈ e eqa ] → A [ A [ h-1  o h ]  ≈ id1 A d ]
           → Equalizer A {c} (A [ f o h ])  (A [ g o h ] ) 
equalizer+h  {a} {b} {c} {d} {f} {g} eqa i h h-1 eq h-1-id =  record {
      e = i  ; -- A [ h-1 o e eqa ]  ;       -- Hom A a d
      fe=ge = fe=ge1 ;
      k = λ j eq' → k eqa (A [ h o j ]) (fhj=ghj j eq' ) ;
      ek=h = ek=h1 ; 
      uniqueness = uniqueness1
   } where
      fhj=ghj :  {d' : Obj A } → (j : Hom A d' d ) → 
           A [ A [ A [ f o h ] o j ] ≈ A [ A [ g o h ] o j ] ] →
           A [ A [ f o A [ h o j ] ] ≈ A [ g o A [ h o j ] ] ] 
      fhj=ghj j eq' = let open ≈-Reasoning (A) in
             begin
                  f o ( h o j  )
             ≈⟨ assoc  ⟩
                  (f o h ) o j  
             ≈⟨ eq' ⟩
                  (g o h ) o j  
             ≈↑⟨ assoc ⟩
                  g o ( h  o j )

      fe=ge1 :  A [ A [ A [ f o h ] o i ] ≈ A [ A [ g o h ] o i ] ]
      fe=ge1 = let open ≈-Reasoning (A) in 
             begin
                   ( f o h ) o i
             ≈↑⟨ assoc  ⟩
                   f o (h  o i )
             ≈⟨ cdr eq ⟩
                   f o (e eqa)
             ≈⟨ fe=ge eqa ⟩
                   g o (e eqa)
             ≈↑⟨ cdr eq ⟩
                   g o (h  o i )
             ≈⟨ assoc ⟩
                   ( g o h ) o i

      ek=h1 :  {d' : Obj A} {k' : Hom A d' d} {eq' : A [ A [ A [ f o h ] o k' ] ≈ A [ A [ g o h ] o k' ] ]} →
                A [ A [ i o k eqa (A [ h o k' ]) (fhj=ghj k' eq') ] ≈ k' ]
      ek=h1 {d'} {k'} {eq'} = let open ≈-Reasoning (A) in
             begin
                   i o k eqa (h o k' ) (fhj=ghj k' eq') --    h-1 (h o i ) o k eqa (h o k' ) = h-1 (h o k')
             ≈↑⟨ idL  ⟩
                   (id1 A d ) o ( i o k eqa (h o k' ) (fhj=ghj k' eq')) 
             ≈↑⟨ car h-1-id ⟩
                   ( h-1 o h ) o ( i o k eqa (h o k' ) (fhj=ghj k' eq')) 
             ≈↑⟨ assoc  ⟩
                    h-1 o ( h  o ( i o k eqa (h o k' ) (fhj=ghj k' eq')) )
             ≈⟨ cdr assoc  ⟩
                    h-1 o ( (h  o  i ) o k eqa (h o k' ) (fhj=ghj k' eq'))
             ≈⟨ cdr (car eq ) ⟩
                    h-1 o ( (e eqa) o k eqa (h o k' ) (fhj=ghj k' eq'))
             ≈⟨ cdr (ek=h eqa)  ⟩
                    h-1 o ( h  o k' )
             ≈⟨ assoc  ⟩
                    ( h-1 o  h ) o k' 
             ≈⟨ car h-1-id ⟩
                    id1 A d o k' 
             ≈⟨ idL ⟩
                   k'

      uniqueness1 :  {d' : Obj A} {h' : Hom A d' d} {eq' : A [ A [ A [ f o h ] o h' ] ≈ A [ A [ g o h ] o h' ] ]} {k' : Hom A d' c} →
                A [ A [ i o k' ] ≈ h' ] → A [ k eqa (A [ h o h' ]) (fhj=ghj h' eq') ≈ k' ]
      uniqueness1 {d'} {h'} {eq'} {k'} ik=h = let open ≈-Reasoning (A) in
             begin
                   k eqa (A [ h o h' ])  (fhj=ghj h' eq')
             ≈⟨ uniqueness eqa ( begin
                    e eqa o k'
                ≈↑⟨ car eq  ⟩
                    (h o i ) o k'
                ≈↑⟨ assoc   ⟩
                    h o (i  o k')
                ≈⟨ cdr ik=h ⟩
                     h o h' 
             ∎ ) ⟩
                   k'


--  If we have equalizer f g, e hf hg is also equalizer if we have isomorphic pair 

h+equalizer : {a b c d : Obj A } {f g : Hom A a b } ( eqa : Equalizer A {c} f g) (h : Hom A b d ) 
           → (h-1 : Hom A d b ) → A [ A [ h-1  o h ]  ≈ id1 A b ]
           → Equalizer A {c} (A [ h o f ])  (A [ h o g ] ) 
h+equalizer  {a} {b} {c} {d} {f} {g} eqa h h-1 h-1-id =  record {
      e = e eqa  ;   
      fe=ge = fe=ge1 ; 
      k = λ j eq' → k eqa j (fj=gj j eq') ;
      ek=h = ek=h1 ; 
      uniqueness = uniqueness1
   }  where
      fj=gj : {e : Obj A} → (j : Hom A e a ) →  A [ A [ A [ h o f ] o  j ] ≈ A [ A [ h o g ] o j ] ] →  A [ A [ f o j ] ≈ A [ g o j ] ]
      fj=gj j eq  = let open ≈-Reasoning (A) in
             begin
                f o j
             ≈↑⟨ idL ⟩
                id1 A b  o ( f o j )
             ≈↑⟨ car h-1-id  ⟩
                (h-1 o h )  o ( f o j )
             ≈↑⟨ assoc  ⟩
                h-1 o (h  o ( f o j ))
             ≈⟨ cdr assoc  ⟩
                h-1 o ((h  o  f) o j )
             ≈⟨ cdr eq ⟩
                h-1 o ((h  o  g) o j )
             ≈↑⟨ cdr assoc  ⟩
                h-1 o (h  o ( g o j ))
             ≈⟨ assoc ⟩
                (h-1 o h)  o ( g o j )
             ≈⟨ car h-1-id  ⟩
                id1 A b  o ( g o j )
             ≈⟨ idL ⟩
                g o j

      fe=ge1 :  A [ A [ A [ h o f ] o e eqa ] ≈ A [ A [ h o g ] o e eqa ] ]
      fe=ge1 =  let open ≈-Reasoning (A) in
             begin
                ( h o f ) o e eqa
             ≈↑⟨ assoc  ⟩
                h o (f  o e eqa )
             ≈⟨ cdr (fe=ge eqa)  ⟩
                h o (g  o e eqa )
             ≈⟨ assoc ⟩
                ( h o g ) o e eqa 

      ek=h1 :   {d₁ : Obj A} {j : Hom A d₁ a} {eq : A [ A [ A [ h o f ] o j ] ≈ A [ A [ h o g ] o j ] ]} →
        A [ A [ e eqa o k eqa j (fj=gj j eq) ] ≈ j ]
      ek=h1 {d₁} {j} {eq}  = ek=h eqa
      uniqueness1 : {d₁ : Obj A} {j : Hom A d₁ a} {eq : A [ A [ A [ h o f ] o j ] ≈ A [ A [ h o g ] o j ] ]} {k' : Hom A d₁ c} →
        A [ A [ e eqa o k' ] ≈ j ] → A [ k eqa j (fj=gj j eq) ≈ k' ]
      uniqueness1 = uniqueness eqa
      
--  If we have equalizer f g, e (ef) (eg) is also an equalizer  and e = id c

eefeg : {a b c : Obj A } {f g : Hom A a b } ( eqa : Equalizer A {c} f g) 
           → Equalizer A {c} (A [ f o e eqa ])  (A [ g o e eqa ] ) 
eefeg {a} {b} {c} {f} {g} eqa =  record {
      e = id1 A c ; -- i  ; -- A [ h-1 o e eqa ]  ;       -- Hom A a d
      fe=ge = fe=ge1 ;
      k = λ j eq' → k eqa (A [ h o j ]) (fhj=ghj j eq' ) ;
      ek=h = ek=h1 ; 
      uniqueness = uniqueness1
   } where
      i = id1 A c
      h = e eqa
      fhj=ghj :  {d' : Obj A } → (j : Hom A d' c ) → 
           A [ A [ A [ f o h ] o j ] ≈ A [ A [ g o h ] o j ] ] →
           A [ A [ f o A [ h o j ] ] ≈ A [ g o A [ h o j ] ] ] 
      fhj=ghj j eq' = let open ≈-Reasoning (A) in
             begin
                  f o ( h o j  )
             ≈⟨ assoc  ⟩
                  (f o h ) o j  
             ≈⟨ eq' ⟩
                  (g o h ) o j  
             ≈↑⟨ assoc ⟩
                  g o ( h  o j )

      fe=ge1 :  A [ A [ A [ f o h ] o i ] ≈ A [ A [ g o h ] o i ] ]
      fe=ge1 = let open ≈-Reasoning (A) in 
             begin
                   ( f o h ) o i
             ≈⟨ car ( fe=ge eqa ) ⟩
                   ( g o h ) o i

      ek=h1 :  {d' : Obj A} {k' : Hom A d' c} {eq' : A [ A [ A [ f o h ] o k' ] ≈ A [ A [ g o h ] o k' ] ]} →
                A [ A [ i o k eqa (A [ h o k' ]) (fhj=ghj k' eq') ] ≈ k' ]
      ek=h1 {d'} {k'} {eq'} = let open ≈-Reasoning (A) in
             begin
                   i o k eqa (h o k' ) (fhj=ghj k' eq') --    h-1 (h o i ) o k eqa (h o k' ) = h-1 (h o k')
             ≈⟨ idL  ⟩
                   k eqa (e eqa o k' ) (fhj=ghj k' eq')
             ≈⟨ uniqueness eqa refl-hom ⟩
                   k'

      uniqueness1 :  {d' : Obj A} {h' : Hom A d' c} {eq' : A [ A [ A [ f o h ] o h' ] ≈ A [ A [ g o h ] o h' ] ]} {k' : Hom A d' c} →
                A [ A [ i o k' ] ≈ h' ] → A [ k eqa (A [ h o h' ]) (fhj=ghj h' eq') ≈ k' ]
      uniqueness1 {d'} {h'} {eq'} {k'} ik=h = let open ≈-Reasoning (A) in
             begin
                   k eqa ( e eqa o h')  (fhj=ghj h' eq')
             ≈⟨ uniqueness eqa ( begin
                    e eqa o k'
                ≈↑⟨ cdr idL ⟩
                    e eqa o (id1 A c o k' )
                ≈⟨ cdr ik=h ⟩
                    e eqa o h' 
             ∎ ) ⟩
                   k'


--
-- If we have two equalizers on c and c', there are isomorphic pair h, h'
--
--     h : c → c'  h' : c' → c
--             h h' = 1 and h' h = 1
--     not yet done


c-iso-l : { c c' a b : Obj A } {f g : Hom A a b } → ( eqa : Equalizer A {c} f g) → ( eqa' :  Equalizer A {c'} f g ) 
      → (eff' : Equalizer A {c'} f f ) → (eff : Equalizer A {c} f f )
      → Hom A c c'  
c-iso-l  {c} {c'} eqa eqa' eff' eff  = let open ≈-Reasoning (A) in k eff' (A [ e eqa  o id1 A c ]) refl-hom

c-iso-r : { c c' a b : Obj A } {f g : Hom A a b } → ( eqa : Equalizer A {c} f g) → ( eqa' :  Equalizer A {c'} f g ) 
      → (eff' : Equalizer A {c'} f f ) → (eff : Equalizer A {c} f f )
      → Hom A c' c   
c-iso-r  {c} {c'} eqa eqa' eff' eff = let open ≈-Reasoning (A) in k eff (A [ e eqa'  o id1 A c' ]) refl-hom

c-iso-1 : { c c' a b : Obj A } {f g : Hom A a b } → ( eqa : Equalizer A {c} f g) → ( eqa' :  Equalizer A {c'} f g ) 
      → (eff' : Equalizer A {c'} f f ) → (eff : Equalizer A {c} f f )
      →  A [ A [  e (eefeg eqa') o k (eefeg eqa') (id1 A c')  (f1=g1 (fe=ge eqa') (id1 A c')) ]  ≈ id1 A c' ]
c-iso-1 {c} {c'} {a} {b} {f} {g} eqa eqa' eff' eff =  let open ≈-Reasoning (A) in begin
                e (eefeg eqa') o k (eefeg eqa') (id1 A c')  (f1=g1 (fe=ge eqa') (id1 A c'))
             ≈⟨ ek=h ( eefeg eqa' )⟩
                id1 A c'


c-iso-2 : { c c' a b : Obj A } {f g : Hom A a b } → ( eqa : Equalizer A {c} f g) → ( eqa' :  Equalizer A {c'} f g ) 
      → (eff' : Equalizer A {c'} f f ) → (eff : Equalizer A {c} f f )
      →  A [  k eqa' ( A [ e eqa' o id1 A c' ] ) (f1=gh (fe=ge eqa' )) ≈ id1 A c' ]
c-iso-2 {c} {c'} {a} {b} {f} {g} eqa eqa' eff' eff =  let open ≈-Reasoning (A) in begin
                 k eqa' ( A [ e eqa' o id1 A c' ] ) (f1=gh (fe=ge eqa' ) )
             ≈⟨ uniqueness eqa' refl-hom ⟩
                id1 A c'


c-iso-3 : { c c' a b : Obj A } {f g : Hom A a b } → ( eqa : Equalizer A {c} f g) → ( eqa' :  Equalizer A {c'} f g ) 
      → (eff' : Equalizer A {c'} f f ) → (eff : Equalizer A {c} f f )
      →  A [  k eff' ( A [ e eff' o id1 A c' ] ) (f1=gh (fe=ge eff')) ≈ id1 A c' ]
c-iso-3 {c} {c'} {a} {b} {f} {g} eqa eqa' eff' eff =  let open ≈-Reasoning (A) in begin
                 k eff' ( A [ e eff' o id1 A c' ] ) (f1=gh (fe=ge eff'))
             ≈⟨ uniqueness eff' refl-hom ⟩
                id1 A c'


--    e k e k = 1c                   e e = e -> e = 1c?
--    k e k e = 1c' ?


c-iso : { c c' a b : Obj A } {f g : Hom A a b } → ( eqa : Equalizer A {c} f g) → ( eqa' :  Equalizer A {c'} f g ) 
      → (eff' : Equalizer A {c'} f f ) → (eff : Equalizer A {c} f f )
      →  A [ A [ c-iso-l eqa eqa' eff' eff  o c-iso-r eqa eqa' eff' eff ]  ≈ id1 A c' ]
c-iso {c} {c'} {a} {b} {f} {g} eqa eqa' eff' eff = let open ≈-Reasoning (A) in begin
             c-iso-l eqa eqa' eff' eff  o c-iso-r eqa eqa' eff' eff 
             ≈⟨⟩
                k eff' (e eqa  o id1 A c) refl-hom  o k eff (e eqa'  o id1 A c') refl-hom
             ≈⟨  car ( uniqueness eff' ( begin
                     e eff' o k eff' {!!} {!!}
                 ≈⟨ {!!} ⟩
                     e eqa o id1 A c
             ∎ ))  ⟩
                {!!} o k eff (e eqa'  o id1 A c') refl-hom
             ≈⟨  {!!} ⟩
                id1 A c'



-- Equalizer is unique up to iso

--
--        
--           e eqa f g        f
--         c ----------> a ------->b
--
equalizer-iso-eq' : { c c' a b : Obj A } {f g : Hom A a b } → ( eqa : Equalizer A {c} f g) → ( eqa' :  Equalizer A {c'} f g ) 
      { h : Hom A a c } →  A [ A [ h o e eqa ] ≈ id1 A c ] → A [ A [ k eqa (e eqa' ) (fe=ge eqa') o k eqa' (e  eqa ) (fe=ge eqa)  ] ≈ id1 A c ]
equalizer-iso-eq' {c} {c'} {f} {g} eqa eqa' {h} rev =  let open ≈-Reasoning (A) in
             begin
                 k eqa (e eqa' ) (fe=ge eqa') o k eqa' (e  eqa ) (fe=ge eqa)
             ≈↑⟨ idL ⟩
                 (id1 A c)  o ( k eqa (e eqa' ) (fe=ge eqa') o k eqa' (e  eqa ) (fe=ge eqa) )
             ≈↑⟨ car rev  ⟩
                 ( h o e eqa )  o ( k eqa (e eqa' ) (fe=ge eqa') o k eqa' (e  eqa ) (fe=ge eqa) )
             ≈↑⟨ assoc ⟩
                  h o ( e eqa   o ( k eqa (e eqa' ) (fe=ge eqa') o k eqa' (e  eqa ) (fe=ge eqa) ) )
             ≈⟨ cdr assoc ⟩
                  h o (( e eqa   o  k eqa (e eqa' ) (fe=ge eqa')) o k eqa' (e  eqa ) (fe=ge eqa)   )
             ≈⟨ cdr ( car (ek=h eqa) )  ⟩
                  h o ( e eqa'  o k eqa' (e  eqa ) (fe=ge eqa)   )
             ≈⟨ cdr (ek=h eqa' ) ⟩
                  h o  e eqa
             ≈⟨  rev  ⟩
                 id1 A c


equalizer-iso-eq : { c c' a b : Obj A } {f g : Hom A a b } → ( eqa : Equalizer A {c} f g) → ( eqa' :  Equalizer A {c'} f g ) 
       → A [ A [ k eqa (e eqa' ) (fe=ge eqa') o k eqa' (e  eqa ) (fe=ge eqa)  ] ≈ id1 A c ]
equalizer-iso-eq {c} {c'} {f} {g} eqa eqa' = equalizer-iso-eq' {c} {c'} {f} {g} eqa eqa' {{!!}}  {!!}

-- ke = e' k'e' = e  → k k' = 1 , k' k = 1
--     ke  = e'
--     k'ke  = k'e' = e   kk' = 1
--     x e = e -> x = id?

----
--
-- An equalizer satisfies Burroni equations
--
--    b4 is not yet done 
----

lemma-equ1 : {a b c : Obj A} (f g : Hom A a b)  → 
         ( {a b c : Obj A} → (f g : Hom A a b)  → Equalizer A {c} f g ) → Burroni A {c} f g
lemma-equ1  {a} {b} {c} f g eqa = record {
      α = λ f g →  e (eqa f g ) ; -- Hom A c a
      γ = λ {a} {b} {c} {d} f g h → k (eqa f g ) {d} ( A [ h  o (e ( eqa (A [ f  o  h ] ) (A [ g o h ] ))) ] ) (lemma-equ4 {a} {b} {c} {d} f g h ) ;  -- Hom A c d
      δ =  λ {a} f → k (eqa f f) (id1 A a)  (lemma-equ2 f); -- Hom A a c
      b1 = fe=ge (eqa f g) ;
      b2 = lemma-b2 ;
      b3 = lemma-b3 ;
      b4 = lemma-b4 
 } where
     --
     --           e eqa f g        f
     --         c ----------> a ------->b
     --         ^                  g     
     --         |                           
     --         |k₁  = e eqa (f o (e (eqa f g))) (g o (e (eqa f g))))
     --         |        
     --         d
     --         
     --         
     --               e  o id1 ≈  e  →   k e  ≈ id

     lemma-equ2 : {a b : Obj A} (f : Hom A a b)  → A [ A [ f o id1 A a ]  ≈ A [ f o id1 A a ] ]
     lemma-equ2 f =   let open ≈-Reasoning (A) in refl-hom
     lemma-b3 : A [ A [ e (eqa f f) o k (eqa f f) (id1 A a) (lemma-equ2 f) ] ≈ id1 A a ]
     lemma-b3 = let open ≈-Reasoning (A) in
             begin  
                  e (eqa f f) o k (eqa f f) (id1 A a) (lemma-equ2 f)
             ≈⟨ ek=h (eqa f f )  ⟩
                  id1 A a

     lemma-equ4 :  {a b c d : Obj A}  → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) → 
                      A [ A [ f o A [ h o e (eqa (A [ f o h ]) (A [ g o h ])) ] ] ≈ A [ g o A [ h o e (eqa (A [ f o h ]) (A [ g o h ])) ] ] ]
     lemma-equ4 {a} {b} {c} {d} f g h  = let open ≈-Reasoning (A) in
             begin
                   f o ( h o e (eqa (f o h) ( g o h )))
             ≈⟨ assoc ⟩
                   (f o h) o e (eqa (f o h) ( g o h ))
             ≈⟨ fe=ge (eqa (A [ f o h ]) (A [ g o h ])) ⟩
                   (g o h) o e (eqa (f o h) ( g o h ))
             ≈↑⟨ assoc ⟩
                   g o ( h o e (eqa (f o h) ( g o h )))

     lemma-b2 :  {d : Obj A} {h : Hom A d a} → A [ 
                      A [ e (eqa f g) o k (eqa f g) (A [ h o e (eqa (A [ f o h ]) (A [ g o h ])) ]) (lemma-equ4 {a} {b} {c} f g h) ]
                    ≈ A [ h o e (eqa (A [ f o h ]) (A [ g o h ])) ] ]
     lemma-b2 {d} {h} = let open ≈-Reasoning (A) in
             begin
                    e (eqa f g) o k (eqa f g) (h o e (eqa (f o h) (g o h))) (lemma-equ4 {a} {b} {c} f g h) 
             ≈⟨ ek=h (eqa f g)  ⟩
                    h o e (eqa (f o h ) ( g o h ))

     lemma-b4 : {d : Obj A} {j : Hom A d c} → A [ 
          A [ k (eqa f g) (A [ A [ e (eqa f g) o j ] o e (eqa (A [ f o A [ e (eqa f g) o j ] ]) (A [ g o A [ e (eqa f g) o j ] ])) ])
                     (lemma-equ4 {a} {b} {c} f g (A [ e (eqa f g) o j ])) o 
              k (eqa (A [ f o A [ e (eqa f g) o j ] ]) (A [ f o A [ e (eqa f g) o j ] ])) (id1 A d) (lemma-equ2 (A [ f o A [ e (eqa f g) o j ] ])) ]
              ≈ j ]
     lemma-b4 {d} {j} = let open ≈-Reasoning (A) in 
             begin
                     ( k (eqa f g) (( ( e (eqa f g) o j ) o e (eqa (( f o ( e (eqa f g) o j ) )) (( g o ( e (eqa f g) o j ) ))) ))
                            (lemma-equ4 {a} {b} {c} f g (( e (eqa f g) o j ))) o
                       k (eqa (( f o ( e (eqa f g) o j ) )) (( f o ( e (eqa f g) o j ) ))) (id1 A d) (lemma-equ2 (( f o ( e (eqa f g) o j ) ))) )
             ≈⟨ car ( uniqueness (eqa f g) ( begin
                   e (eqa f g) o  j 
                ≈⟨ {!!} ⟩
                   (e (eqa f g) o j) o e (eqa (f o e (eqa f g) o j) (g o e (eqa f g) o j))
             ∎ ))  ⟩
                    j o  k (eqa (( f o ( e (eqa f g) o j ) )) (( f o ( e (eqa f g) o j ) ))) (id1 A d) (lemma-equ2 (( f o ( e (eqa f g) o j ) ))) 
             ≈⟨ cdr ( uniqueness (eqa (( f o ( e (eqa f g) o j ) )) (( f o ( e (eqa f g) o j ) ))) ( begin
                  e (eqa (f o e (eqa f g) o j) (f o e (eqa f g) o j)) o id1 A d
                ≈⟨ idR ⟩
                  e (eqa (f o e (eqa f g) o j) (f o e (eqa f g) o j)) 
                ≈⟨ {!!} ⟩
                  id1 A d
             ∎ ))  ⟩
                    j  o  id1 A d
             ≈⟨ idR ⟩
                    j



-- end