Mercurial > hg > Members > kono > Proof > category
diff universal-mapping.agda @ 37:2f5f5b4d62fa
universalMapping
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 22 Jul 2013 17:11:05 +0900 |
parents | ad997bd9788b |
children | 999e637d14c7 |
line wrap: on
line diff
--- a/universal-mapping.agda Mon Jul 22 16:47:45 2013 +0900 +++ b/universal-mapping.agda Mon Jul 22 17:11:05 2013 +0900 @@ -5,6 +5,7 @@ open import Category.HomReasoning open Functor + record IsUniversalMapping {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') ( U : Functor B A ) ( F : Obj A -> Obj B ) @@ -13,15 +14,17 @@ : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁' ⊔ c₂' ⊔ ℓ' )) where field universalMapping : (a' : Obj A) ( b' : Obj B ) -> { f : Hom A a' (FObj U b') } -> - A [ A [ FMap U ( f * ) o η a' ] ≈ f ] + A [ A [ FMap U ( f * ) o η a' ] ≈ f ] + record UniversalMapping {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') ( U : Functor B A ) ( F : Obj A -> Obj B ) ( η : (a : Obj A) -> Hom A a ( FObj U (F a) ) ) - ( _* : { a : Obj A}{ b : Obj B} -> ( Hom A a (FObj U b) ) -> Hom B (F a ) b ) : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁' ⊔ c₂' ⊔ ℓ' )) where + infixr 11 _* field + _* : { a : Obj A}{ b : Obj B} -> ( Hom A a (FObj U b) ) -> Hom B (F a ) b isUniversalMapping : IsUniversalMapping A B U F η _* open NTrans @@ -62,11 +65,13 @@ ( F : Functor A B ) ( η : NTrans A A identityFunctor ( U ○ F ) ) ( ε : NTrans B B ( F ○ U ) identityFunctor ) -> - Adjunction A B U F η ε -> UniversalMapping A B U (FObj F) (TMap η) (Solution A B U F ε) + Adjunction A B U F η ε -> UniversalMapping A B U (FObj F) (TMap η) Lemma1 A B U F η ε adj = record { + _* = Solution A B U F ε ; isUniversalMapping = record { - universalMapping = univeralMapping + universalMapping = universalMapping } } where - univeralMapping : {!!} - univeralMapping = {!!} + universalMapping : (a' : Obj A) ( b' : Obj B ) -> { f : Hom A a' (FObj U b') } -> + A [ A [ FMap U ( Solution A B U F ε f ) o TMap η a' ] ≈ f ] + universalMapping a b = ?