Mercurial > hg > Members > kono > Proof > category
diff list-level.agda @ 153:3249aaddc405
sync
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 17 Aug 2013 21:09:34 +0900 |
parents | |
children | d6a6dd305da2 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/list-level.agda Sat Aug 17 21:09:34 2013 +0900 @@ -0,0 +1,165 @@ +module list-level where + +open import Level + + +postulate A : Set +postulate B : Set +postulate C : Set + +postulate a : A +postulate b : A +postulate c : A + + +infixr 40 _::_ +data List {a} (A : Set a) : Set a where + [] : List A + _::_ : A -> List A -> List A + + +infixl 30 _++_ +_++_ : ∀ {a} {A : Set a} -> List A -> List A -> List A +[] ++ ys = ys +(x :: xs) ++ ys = x :: (xs ++ ys) + +l1 = a :: [] +l2 = a :: b :: a :: c :: [] + +l3 = l1 ++ l2 + +L1 = A :: [] +L2 = A :: B :: A :: C :: [] + +L3 = L1 ++ L2 + +data Node {a} ( A : Set a ) : Set a where + leaf : A -> Node A + node : Node A -> Node A -> Node A + +flatten : ∀{n} { A : Set n } -> Node A -> List A +flatten ( leaf a ) = a :: [] +flatten ( node a b ) = flatten a ++ flatten b + +n1 = node ( leaf a ) ( node ( leaf b ) ( leaf c )) + +open import Relation.Binary.PropositionalEquality + +infixr 20 _==_ + +data _==_ {n} {A : Set n} : List A -> List A -> Set n where + reflection : {x : List A} -> x == x + +cong1 : ∀{a} {A : Set a } {b} { B : Set b } -> + ( f : List A -> List B ) -> {x : List A } -> {y : List A} -> x == y -> f x == f y +cong1 f reflection = reflection + +eq-cons : ∀{n} {A : Set n} {x y : List A} ( a : A ) -> x == y -> ( a :: x ) == ( a :: y ) +eq-cons a z = cong1 ( \x -> ( a :: x) ) z + +trans-list : ∀{n} {A : Set n} {x y z : List A} -> x == y -> y == z -> x == z +trans-list reflection reflection = reflection + + +==-to-≡ : ∀{n} {A : Set n} {x y : List A} -> x == y -> x ≡ y +==-to-≡ reflection = refl + +list-id-l : { A : Set } -> { x : List A} -> [] ++ x == x +list-id-l = reflection + +list-id-r : { A : Set } -> ( x : List A ) -> x ++ [] == x +list-id-r [] = reflection +list-id-r (x :: xs) = eq-cons x ( list-id-r xs ) + +list-assoc : {A : Set } -> ( xs ys zs : List A ) -> + ( ( xs ++ ys ) ++ zs ) == ( xs ++ ( ys ++ zs ) ) +list-assoc [] ys zs = reflection +list-assoc (x :: xs) ys zs = eq-cons x ( list-assoc xs ys zs ) + + +module ==-Reasoning {n} (A : Set n ) where + + infixr 2 _∎ + infixr 2 _==⟨_⟩_ _==⟨⟩_ + infix 1 begin_ + + + data _IsRelatedTo_ (x y : List A) : + Set n where + relTo : (x≈y : x == y ) → x IsRelatedTo y + + begin_ : {x : List A } {y : List A} → + x IsRelatedTo y → x == y + begin relTo x≈y = x≈y + + _==⟨_⟩_ : (x : List A ) {y z : List A} → + x == y → y IsRelatedTo z → x IsRelatedTo z + _ ==⟨ x≈y ⟩ relTo y≈z = relTo (trans-list x≈y y≈z) + + _==⟨⟩_ : (x : List A ) {y : List A} + → x IsRelatedTo y → x IsRelatedTo y + _ ==⟨⟩ x≈y = x≈y + + _∎ : (x : List A ) → x IsRelatedTo x + _∎ _ = relTo reflection + +lemma11 : ∀{n} (A : Set n) ( x : List A ) -> x == x +lemma11 A x = let open ==-Reasoning A in + begin x ∎ + +++-assoc : ∀{n} (L : Set n) ( xs ys zs : List L ) -> (xs ++ ys) ++ zs == xs ++ (ys ++ zs) +++-assoc A [] ys zs = let open ==-Reasoning A in + begin -- to prove ([] ++ ys) ++ zs == [] ++ (ys ++ zs) + ( [] ++ ys ) ++ zs + ==⟨ reflection ⟩ + ys ++ zs + ==⟨ reflection ⟩ + [] ++ ( ys ++ zs ) + ∎ + +++-assoc A (x :: xs) ys zs = let open ==-Reasoning A in + begin -- to prove ((x :: xs) ++ ys) ++ zs == (x :: xs) ++ (ys ++ zs) + ((x :: xs) ++ ys) ++ zs + ==⟨ reflection ⟩ + (x :: (xs ++ ys)) ++ zs + ==⟨ reflection ⟩ + x :: ((xs ++ ys) ++ zs) + ==⟨ cong1 (_::_ x) (++-assoc A xs ys zs) ⟩ + x :: (xs ++ (ys ++ zs)) + ==⟨ reflection ⟩ + (x :: xs) ++ (ys ++ zs) + ∎ + + + +--data Bool : Set where +-- true : Bool +-- false : Bool + + +--postulate Obj : Set + +--postulate Hom : Obj -> Obj -> Set + + +--postulate id : { a : Obj } -> Hom a a + + +--infixr 80 _○_ +--postulate _○_ : { a b c : Obj } -> Hom b c -> Hom a b -> Hom a c + +-- postulate axId1 : {a b : Obj} -> ( f : Hom a b ) -> f == id ○ f +-- postulate axId2 : {a b : Obj} -> ( f : Hom a b ) -> f == f ○ id + +--assoc : { a b c d : Obj } -> +-- (f : Hom c d ) -> (g : Hom b c) -> (h : Hom a b) -> +-- (f ○ g) ○ h == f ○ ( g ○ h) + + +--a = Set + +-- ListObj : {A : Set} -> List A +-- ListObj = List Set + +-- ListHom : ListObj -> ListObj -> Set +