153
|
1 module list-level where
|
|
2
|
|
3 open import Level
|
|
4
|
|
5
|
|
6 postulate A : Set
|
|
7 postulate B : Set
|
|
8 postulate C : Set
|
|
9
|
|
10 postulate a : A
|
|
11 postulate b : A
|
|
12 postulate c : A
|
|
13
|
|
14
|
|
15 infixr 40 _::_
|
|
16 data List {a} (A : Set a) : Set a where
|
|
17 [] : List A
|
|
18 _::_ : A -> List A -> List A
|
|
19
|
|
20
|
|
21 infixl 30 _++_
|
|
22 _++_ : ∀ {a} {A : Set a} -> List A -> List A -> List A
|
|
23 [] ++ ys = ys
|
|
24 (x :: xs) ++ ys = x :: (xs ++ ys)
|
|
25
|
|
26 l1 = a :: []
|
|
27 l2 = a :: b :: a :: c :: []
|
|
28
|
|
29 l3 = l1 ++ l2
|
|
30
|
|
31 L1 = A :: []
|
|
32 L2 = A :: B :: A :: C :: []
|
|
33
|
|
34 L3 = L1 ++ L2
|
|
35
|
|
36 data Node {a} ( A : Set a ) : Set a where
|
|
37 leaf : A -> Node A
|
|
38 node : Node A -> Node A -> Node A
|
|
39
|
|
40 flatten : ∀{n} { A : Set n } -> Node A -> List A
|
|
41 flatten ( leaf a ) = a :: []
|
|
42 flatten ( node a b ) = flatten a ++ flatten b
|
|
43
|
|
44 n1 = node ( leaf a ) ( node ( leaf b ) ( leaf c ))
|
|
45
|
|
46 open import Relation.Binary.PropositionalEquality
|
|
47
|
|
48 infixr 20 _==_
|
|
49
|
|
50 data _==_ {n} {A : Set n} : List A -> List A -> Set n where
|
|
51 reflection : {x : List A} -> x == x
|
|
52
|
|
53 cong1 : ∀{a} {A : Set a } {b} { B : Set b } ->
|
|
54 ( f : List A -> List B ) -> {x : List A } -> {y : List A} -> x == y -> f x == f y
|
|
55 cong1 f reflection = reflection
|
|
56
|
|
57 eq-cons : ∀{n} {A : Set n} {x y : List A} ( a : A ) -> x == y -> ( a :: x ) == ( a :: y )
|
|
58 eq-cons a z = cong1 ( \x -> ( a :: x) ) z
|
|
59
|
|
60 trans-list : ∀{n} {A : Set n} {x y z : List A} -> x == y -> y == z -> x == z
|
|
61 trans-list reflection reflection = reflection
|
|
62
|
|
63
|
|
64 ==-to-≡ : ∀{n} {A : Set n} {x y : List A} -> x == y -> x ≡ y
|
|
65 ==-to-≡ reflection = refl
|
|
66
|
|
67 list-id-l : { A : Set } -> { x : List A} -> [] ++ x == x
|
|
68 list-id-l = reflection
|
|
69
|
|
70 list-id-r : { A : Set } -> ( x : List A ) -> x ++ [] == x
|
|
71 list-id-r [] = reflection
|
|
72 list-id-r (x :: xs) = eq-cons x ( list-id-r xs )
|
|
73
|
|
74 list-assoc : {A : Set } -> ( xs ys zs : List A ) ->
|
|
75 ( ( xs ++ ys ) ++ zs ) == ( xs ++ ( ys ++ zs ) )
|
|
76 list-assoc [] ys zs = reflection
|
|
77 list-assoc (x :: xs) ys zs = eq-cons x ( list-assoc xs ys zs )
|
|
78
|
|
79
|
|
80 module ==-Reasoning {n} (A : Set n ) where
|
|
81
|
|
82 infixr 2 _∎
|
|
83 infixr 2 _==⟨_⟩_ _==⟨⟩_
|
|
84 infix 1 begin_
|
|
85
|
|
86
|
|
87 data _IsRelatedTo_ (x y : List A) :
|
|
88 Set n where
|
|
89 relTo : (x≈y : x == y ) → x IsRelatedTo y
|
|
90
|
|
91 begin_ : {x : List A } {y : List A} →
|
|
92 x IsRelatedTo y → x == y
|
|
93 begin relTo x≈y = x≈y
|
|
94
|
|
95 _==⟨_⟩_ : (x : List A ) {y z : List A} →
|
|
96 x == y → y IsRelatedTo z → x IsRelatedTo z
|
|
97 _ ==⟨ x≈y ⟩ relTo y≈z = relTo (trans-list x≈y y≈z)
|
|
98
|
|
99 _==⟨⟩_ : (x : List A ) {y : List A}
|
|
100 → x IsRelatedTo y → x IsRelatedTo y
|
|
101 _ ==⟨⟩ x≈y = x≈y
|
|
102
|
|
103 _∎ : (x : List A ) → x IsRelatedTo x
|
|
104 _∎ _ = relTo reflection
|
|
105
|
|
106 lemma11 : ∀{n} (A : Set n) ( x : List A ) -> x == x
|
|
107 lemma11 A x = let open ==-Reasoning A in
|
|
108 begin x ∎
|
|
109
|
|
110 ++-assoc : ∀{n} (L : Set n) ( xs ys zs : List L ) -> (xs ++ ys) ++ zs == xs ++ (ys ++ zs)
|
|
111 ++-assoc A [] ys zs = let open ==-Reasoning A in
|
|
112 begin -- to prove ([] ++ ys) ++ zs == [] ++ (ys ++ zs)
|
|
113 ( [] ++ ys ) ++ zs
|
|
114 ==⟨ reflection ⟩
|
|
115 ys ++ zs
|
|
116 ==⟨ reflection ⟩
|
|
117 [] ++ ( ys ++ zs )
|
|
118 ∎
|
|
119
|
|
120 ++-assoc A (x :: xs) ys zs = let open ==-Reasoning A in
|
|
121 begin -- to prove ((x :: xs) ++ ys) ++ zs == (x :: xs) ++ (ys ++ zs)
|
|
122 ((x :: xs) ++ ys) ++ zs
|
|
123 ==⟨ reflection ⟩
|
|
124 (x :: (xs ++ ys)) ++ zs
|
|
125 ==⟨ reflection ⟩
|
|
126 x :: ((xs ++ ys) ++ zs)
|
|
127 ==⟨ cong1 (_::_ x) (++-assoc A xs ys zs) ⟩
|
|
128 x :: (xs ++ (ys ++ zs))
|
|
129 ==⟨ reflection ⟩
|
|
130 (x :: xs) ++ (ys ++ zs)
|
|
131 ∎
|
|
132
|
|
133
|
|
134
|
|
135 --data Bool : Set where
|
|
136 -- true : Bool
|
|
137 -- false : Bool
|
|
138
|
|
139
|
|
140 --postulate Obj : Set
|
|
141
|
|
142 --postulate Hom : Obj -> Obj -> Set
|
|
143
|
|
144
|
|
145 --postulate id : { a : Obj } -> Hom a a
|
|
146
|
|
147
|
|
148 --infixr 80 _○_
|
|
149 --postulate _○_ : { a b c : Obj } -> Hom b c -> Hom a b -> Hom a c
|
|
150
|
|
151 -- postulate axId1 : {a b : Obj} -> ( f : Hom a b ) -> f == id ○ f
|
|
152 -- postulate axId2 : {a b : Obj} -> ( f : Hom a b ) -> f == f ○ id
|
|
153
|
|
154 --assoc : { a b c d : Obj } ->
|
|
155 -- (f : Hom c d ) -> (g : Hom b c) -> (h : Hom a b) ->
|
|
156 -- (f ○ g) ○ h == f ○ ( g ○ h)
|
|
157
|
|
158
|
|
159 --a = Set
|
|
160
|
|
161 -- ListObj : {A : Set} -> List A
|
|
162 -- ListObj = List Set
|
|
163
|
|
164 -- ListHom : ListObj -> ListObj -> Set
|
|
165
|