Mercurial > hg > Members > kono > Proof > category
diff src/bi-ccc.agda @ 967:472bcadfd216
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 25 Feb 2021 13:08:17 +0900 |
parents | cb970ab7c32b |
children | 3a096cb82dc4 |
line wrap: on
line diff
--- a/src/bi-ccc.agda Thu Feb 25 11:13:31 2021 +0900 +++ b/src/bi-ccc.agda Thu Feb 25 13:08:17 2021 +0900 @@ -45,9 +45,31 @@ bi-hom→ : {a c : Obj A } → Hom A ⊥ (c <= a ) → Hom A (a ∧ ⊥) c bi-hom→ f = ε o ( < π' , π > o < π , f o π' > ) bi-hom-iso : {a : Obj A } → {f : Hom A (a ∧ ⊥) (a ∧ ⊥)} → A [ bi-hom→ (bi-hom← f ) ≈ f ] - bi-hom-iso = {!!} + bi-hom-iso {a} {f} = begin + bi-hom→ (bi-hom← f ) + ≈⟨⟩ + ε o ( < π' , π > o < π , ((f o < π' , π > ) *) o π' > ) + ≈⟨ cdr (IsCCC.π-exchg isCCC) ⟩ + ε o ( < ((f o < π' , π > ) *) o π' , π > ) + ≈⟨ cdr ( IsCCC.π-cong isCCC refl-hom (sym idL)) ⟩ + ε o ( < ((f o < π' , π > ) *) o π' , id1 A _ o π > ) + ≈↑⟨ cdr (IsCCC.exchg-π isCCC) ⟩ + ε o (( < ((f o < π' , π > ) *) o π , id1 A _ o π' > ) o < π' , π > ) + ≈⟨ cdr (car ( IsCCC.π-cong isCCC refl-hom idL)) ⟩ + ε o (( < ((f o < π' , π > ) *) o π , π' > ) o < π' , π > ) + ≈⟨ assoc ⟩ + (ε o ( < ((f o < π' , π > ) *) o π , π' > )) o < π' , π > + ≈⟨ car (IsCCC.e4a isCCC) ⟩ + (f o < π' , π >) o < π' , π > + ≈⟨ sym assoc ⟩ + f o (< π' , π > o < π' , π >) + ≈⟨ cdr (IsCCC.π'π isCCC) ⟩ + f o id1 A _ + ≈⟨ idR ⟩ + f + ∎ bi-hom-cong : {a c : Obj A } → {f g : Hom A ⊥ (c <= a )} → A [ f ≈ g ] → A [ bi-hom→ f ≈ bi-hom→ g ] - bi-hom-cong = {!!} + bi-hom-cong f=g = cdr ( cdr (IsCCC.π-cong isCCC refl-hom (car f=g) )) bi-ccc-0 : A [ A [ □ ( a ∧ ⊥ ) o π' ] ≈ id1 A ( a ∧ ⊥ ) ] bi-ccc-0 = begin □ ( a ∧ ⊥ ) o π'