Mercurial > hg > Members > kono > Proof > category
changeset 967:472bcadfd216
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 25 Feb 2021 13:08:17 +0900 |
parents | cb970ab7c32b |
children | 3a096cb82dc4 |
files | src/CCC.agda src/bi-ccc.agda |
diffstat | 2 files changed, 60 insertions(+), 18 deletions(-) [+] |
line wrap: on
line diff
--- a/src/CCC.agda Thu Feb 25 11:13:31 2021 +0900 +++ b/src/CCC.agda Thu Feb 25 13:08:17 2021 +0900 @@ -32,29 +32,29 @@ e4a : {a b c : Obj A} → { h : Hom A (c ∧ b) a } → A [ A [ ε o < A [ (h *) o π ] , π' > ] ≈ h ] e4b : {a b c : Obj A} → { k : Hom A c (a <= b ) } → A [ ( A [ ε o < A [ k o π ] , π' > ] ) * ≈ k ] *-cong : {a b c : Obj A} → { f f' : Hom A (a ∧ b) c } → A [ f ≈ f' ] → A [ f * ≈ f' * ] - - e'2 : A [ ○ 1 ≈ id1 A 1 ] - e'2 = let open ≈-Reasoning A in begin + open ≈-Reasoning A + e'2 : ○ 1 ≈ id1 A 1 + e'2 = begin ○ 1 ≈↑⟨ e2 ⟩ id1 A 1 ∎ - e''2 : {a b : Obj A} {f : Hom A a b } → A [ A [ ○ b o f ] ≈ ○ a ] - e''2 {a} {b} {f} = let open ≈-Reasoning A in begin + e''2 : {a b : Obj A} {f : Hom A a b } → ( ○ b o f ) ≈ ○ a + e''2 {a} {b} {f} = begin ○ b o f ≈⟨ e2 ⟩ ○ a ∎ - π-id : {a b : Obj A} → A [ < π , π' > ≈ id1 A (a ∧ b ) ] - π-id {a} {b} = let open ≈-Reasoning A in begin + π-id : {a b : Obj A} → < π , π' > ≈ id1 A (a ∧ b ) + π-id {a} {b} = begin < π , π' > ≈↑⟨ π-cong idR idR ⟩ < π o id1 A (a ∧ b) , π' o id1 A (a ∧ b) > ≈⟨ e3c ⟩ id1 A (a ∧ b ) ∎ - distr-π : {a b c d : Obj A} {f : Hom A c a }{g : Hom A c b } {h : Hom A d c } → A [ A [ < f , g > o h ] ≈ < A [ f o h ] , A [ g o h ] > ] - distr-π {a} {b} {c} {d} {f} {g} {h} = let open ≈-Reasoning A in begin + distr-π : {a b c d : Obj A} {f : Hom A c a }{g : Hom A c b } {h : Hom A d c } → ( < f , g > o h ) ≈ < ( f o h ) , ( g o h ) > + distr-π {a} {b} {c} {d} {f} {g} {h} = begin < f , g > o h ≈↑⟨ e3c ⟩ < π o < f , g > o h , π' o < f , g > o h > @@ -64,8 +64,28 @@ < f o h , g o h > ∎ _×_ : { a b c d : Obj A } ( f : Hom A a c ) (g : Hom A b d ) → Hom A (a ∧ b) ( c ∧ d ) - f × g = < (A [ f o π ] ) , (A [ g o π' ]) > - distr-* : {a b c d : Obj A } { h : Hom A (a ∧ b) c } { k : Hom A d a } → A [ A [ h * o k ] ≈ ( A [ h o < A [ k o π ] , π' > ] ) * ] + f × g = < ( f o π ) , (g o π' ) > + π-exchg : {a b c : Obj A} {f : Hom A c a }{g : Hom A c b } → < π' , π > o < f , g > ≈ < g , f > + π-exchg {a} {b} {c} {f} {g} = begin + < π' , π > o < f , g > + ≈⟨ distr-π ⟩ + < π' o < f , g > , π o < f , g > > + ≈⟨ π-cong e3b e3a ⟩ + < g , f > + ∎ + π'π : {a b : Obj A} → < π' , π > o < π' , π > ≈ id1 A (a ∧ b) + π'π = trans-hom π-exchg π-id + exchg-π : {a b c d : Obj A} {f : Hom A c a }{g : Hom A d b } → < f o π , g o π' > o < π' , π > ≈ < f o π' , g o π > + exchg-π {a} {b} {c} {d} {f} {g} = begin + < f o π , g o π' > o < π' , π > + ≈⟨ distr-π ⟩ + < (f o π) o < π' , π > , (g o π' ) o < π' , π > > + ≈↑⟨ π-cong assoc assoc ⟩ + < f o (π o < π' , π > ) , g o (π' o < π' , π >)> + ≈⟨ π-cong (cdr e3a) (cdr e3b) ⟩ + < f o π' , g o π > + ∎ + distr-* : {a b c d : Obj A } { h : Hom A (a ∧ b) c } { k : Hom A d a } → ( h * o k ) ≈ ( h o < ( k o π ) , π' > ) * distr-* {a} {b} {c} {d} {h} {k} = begin h * o k ≈↑⟨ e4b ⟩ @@ -86,12 +106,12 @@ h o < k o π , π' > ∎ ) ⟩ ( h o < k o π , π' > ) * - ∎ where open ≈-Reasoning A + ∎ α : {a b c : Obj A } → Hom A (( a ∧ b ) ∧ c ) ( a ∧ ( b ∧ c ) ) - α = < A [ π o π ] , < A [ π' o π ] , π' > > + α = < ( π o π ) , < ( π' o π ) , π' > > α' : {a b c : Obj A } → Hom A ( a ∧ ( b ∧ c ) ) (( a ∧ b ) ∧ c ) - α' = < < π , A [ π o π' ] > , A [ π' o π' ] > - β : {a b c d : Obj A } { f : Hom A a b} { g : Hom A a c } { h : Hom A a d } → A [ A [ α o < < f , g > , h > ] ≈ < f , < g , h > > ] + α' = < < π , ( π o π' ) > , ( π' o π' ) > + β : {a b c d : Obj A } { f : Hom A a b} { g : Hom A a c } { h : Hom A a d } → ( α o < < f , g > , h > ) ≈ < f , < g , h > > β {a} {b} {c} {d} {f} {g} {h} = begin α o < < f , g > , h > ≈⟨⟩ @@ -106,7 +126,7 @@ < ( π o < f , g > ) , < ( π' o < f , g > ) , h > > ≈⟨ π-cong e3a ( π-cong e3b refl-hom ) ⟩ < f , < g , h > > - ∎ where open ≈-Reasoning A + ∎ record CCC {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) : Set ( c₁ ⊔ c₂ ⊔ ℓ ) where
--- a/src/bi-ccc.agda Thu Feb 25 11:13:31 2021 +0900 +++ b/src/bi-ccc.agda Thu Feb 25 13:08:17 2021 +0900 @@ -45,9 +45,31 @@ bi-hom→ : {a c : Obj A } → Hom A ⊥ (c <= a ) → Hom A (a ∧ ⊥) c bi-hom→ f = ε o ( < π' , π > o < π , f o π' > ) bi-hom-iso : {a : Obj A } → {f : Hom A (a ∧ ⊥) (a ∧ ⊥)} → A [ bi-hom→ (bi-hom← f ) ≈ f ] - bi-hom-iso = {!!} + bi-hom-iso {a} {f} = begin + bi-hom→ (bi-hom← f ) + ≈⟨⟩ + ε o ( < π' , π > o < π , ((f o < π' , π > ) *) o π' > ) + ≈⟨ cdr (IsCCC.π-exchg isCCC) ⟩ + ε o ( < ((f o < π' , π > ) *) o π' , π > ) + ≈⟨ cdr ( IsCCC.π-cong isCCC refl-hom (sym idL)) ⟩ + ε o ( < ((f o < π' , π > ) *) o π' , id1 A _ o π > ) + ≈↑⟨ cdr (IsCCC.exchg-π isCCC) ⟩ + ε o (( < ((f o < π' , π > ) *) o π , id1 A _ o π' > ) o < π' , π > ) + ≈⟨ cdr (car ( IsCCC.π-cong isCCC refl-hom idL)) ⟩ + ε o (( < ((f o < π' , π > ) *) o π , π' > ) o < π' , π > ) + ≈⟨ assoc ⟩ + (ε o ( < ((f o < π' , π > ) *) o π , π' > )) o < π' , π > + ≈⟨ car (IsCCC.e4a isCCC) ⟩ + (f o < π' , π >) o < π' , π > + ≈⟨ sym assoc ⟩ + f o (< π' , π > o < π' , π >) + ≈⟨ cdr (IsCCC.π'π isCCC) ⟩ + f o id1 A _ + ≈⟨ idR ⟩ + f + ∎ bi-hom-cong : {a c : Obj A } → {f g : Hom A ⊥ (c <= a )} → A [ f ≈ g ] → A [ bi-hom→ f ≈ bi-hom→ g ] - bi-hom-cong = {!!} + bi-hom-cong f=g = cdr ( cdr (IsCCC.π-cong isCCC refl-hom (car f=g) )) bi-ccc-0 : A [ A [ □ ( a ∧ ⊥ ) o π' ] ≈ id1 A ( a ∧ ⊥ ) ] bi-ccc-0 = begin □ ( a ∧ ⊥ ) o π'