Mercurial > hg > Members > kono > Proof > category
diff freyd2.agda @ 639:4cf8f982dc5b
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 02 Jul 2017 02:18:57 +0900 |
parents | a07b95e92933 |
children | 0d6cab67eadc |
line wrap: on
line diff
--- a/freyd2.agda Sat Jul 01 10:21:34 2017 +0900 +++ b/freyd2.agda Sun Jul 02 02:18:57 2017 +0900 @@ -293,6 +293,12 @@ ; t0f=t = λ {a t i} → t0f=t0 {a} {t} {i} ; limit-uniqueness = λ {b} {t} {f} t0f=t → limit-uniqueness0 {b} {t} {f} t0f=t } where + tacomm0 : (a : Obj Sets) ( t : NTrans I Sets (K Sets I a) (U ○ Γ) ) (x : a) {y : Obj I} {z : Obj I} {f : Hom I y z} + → Sets [ Sets [ FMap (U ○ Γ) f o TMap t y ] ≈ Sets [ TMap t z o FMap ( K Sets I a ) f ] ] + tacomm0 a t x {y} {z} {f} = IsNTrans.commute ( isNTrans t ) {y} {z} {f} + sfcomm : Sets [ Sets [ FMap U ( arrow (FMap (SFSF SFS) (fArrow A U (FMap Γ f) (TMap t y x)))) o hom (preinitialObj PI) ] + ≈ Sets [ hom (FObj (SFSF SFS) (ob A U (FObj Γ z) (TMap t z x)) o FMap ( K Sets A * ) ( arrow (FMap (SFSF SFS) (fArrow A U (FMap Γ f) (TMap t y x)))) ] + sfcomm = ? tacomm : (a : Obj Sets) ( t : NTrans I Sets (K Sets I a) (U ○ Γ) ) (x : a) {y : Obj I} {z : Obj I} {f : Hom I y z} → A [ A [ FMap Γ f o arrow (SFSFMap← SFS (preinitialArrow PI {FObj (SFSF SFS) (ob A U (FObj Γ y) (TMap t y x))})) ] ≈ A [ arrow (SFSFMap← SFS (preinitialArrow PI {FObj (SFSF SFS) (ob A U (FObj Γ z) (TMap t z x))} )) @@ -305,9 +311,12 @@ ≈⟨ {!!} ⟩ arrow (SFSFMap← SFS (FMap (SFSF SFS) ( fArrow A U (FMap Γ f) (TMap t y x )) )) o arrow (SFSFMap← SFS (preinitialArrow PI {FObj (SFSF SFS) (ob A U (FObj Γ y) (TMap t y x))})) + ≈⟨⟩ + arrow (( K (Sets) A * ↓ U) [ SFSFMap← SFS (FMap (SFSF SFS) ( fArrow A U (FMap Γ f) (TMap t y x )) ) + o SFSFMap← SFS (preinitialArrow PI {FObj (SFSF SFS) (ob A U (FObj Γ y) (TMap t y x))}) ] ) ≈⟨ {!!} ⟩ - arrow (SFSFMap← SFS (( K (Sets) A * ↓ U) [ FMap (SFSF SFS) ( fArrow A U (FMap Γ f) (TMap t y x )) - o preinitialArrow PI {FObj (SFSF SFS) (ob A U (FObj Γ y) (TMap t y x))} ] )) + arrow ( SFSFMap← SFS (( K (Sets) A * ↓ U) [ FMap (SFSF SFS) ( fArrow A U (FMap Γ f) (TMap t y x )) + o preinitialArrow PI {FObj (SFSF SFS) (ob A U (FObj Γ y) (TMap t y x))} ] ) ) ≈⟨ {!!} ⟩ arrow (SFSFMap← SFS (preinitialArrow PI {FObj (SFSF SFS) (ob A U (FObj Γ z) (TMap t z x))} )) ≈↑⟨ idR ⟩ @@ -317,7 +326,7 @@ ta : (a : Obj Sets) ( t : NTrans I Sets (K Sets I a) (U ○ Γ) ) (x : a) → NTrans I A (K A I (obj (preinitialObj PI))) Γ ta a t x = record { TMap = λ (a : Obj I ) → arrow ( SFSFMap← SFS ( preinitialArrow PI {FObj (SFSF SFS) (ob A U (FObj Γ a) (TMap t a x))} ) ) - ; isNTrans = record { commute = {!!} }} -- λ {a} {b} {f} → commute2 {a} {b} {f} } + ; isNTrans = record { commute = λ {y} {z} {f} → tacomm a t x {y} {z} {f} }} ψ : (a : Obj Sets) → NTrans I Sets (K Sets I a) (U ○ Γ) → Hom Sets a (FObj U (a0 lim)) ψ a t x = FMap U (limit (isLimit lim) (obj (preinitialObj PI)) (ta a t x)) ( hom (preinitialObj PI) OneObj ) t0f=t0 : {a : Obj Sets} {t : NTrans I Sets (K Sets I a) (U ○ Γ)} {i : Obj I} →