diff universal-mapping.agda @ 66:51f653bd9656

distr
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Thu, 25 Jul 2013 12:58:21 +0900
parents 83ff8d48fdca
children 5f331dfc000b
line wrap: on
line diff
--- a/universal-mapping.agda	Thu Jul 25 12:13:10 2013 +0900
+++ b/universal-mapping.agda	Thu Jul 25 12:58:21 2013 +0900
@@ -87,11 +87,11 @@
                   FMap U ( solution  f) o TMap η a 
               ≈⟨⟩
                   FMap U (  B [ TMap ε b o FMap F f ] ) o TMap η a 
-              ≈⟨ car (IsFunctor.distr ( isFunctor U )) ⟩
+              ≈⟨ car (distr U ) ⟩
                  ( (FMap U (TMap ε b))  o (FMap U ( FMap F f )) ) o TMap η a 
               ≈⟨ sym assoc ⟩
                   (FMap U (TMap ε b))  o ((FMap U ( FMap F f ))  o TMap η a )
-              ≈⟨ cdr (nat A η) ⟩
+              ≈⟨ cdr (nat η) ⟩
                   (FMap U (TMap ε b))  o ((TMap η (FObj U b )) o f )
               ≈⟨ assoc ⟩
                   ((FMap U (TMap ε b))  o (TMap η (FObj U b)))  o f 
@@ -113,11 +113,11 @@
                   TMap ε b o FMap F f
               ≈⟨ cdr (sym ( lemma1 a b f g k )) ⟩ 
                   TMap ε b o FMap F ( A [ FMap U g o  TMap η a ] )
-              ≈⟨ cdr (IsFunctor.distr ( isFunctor F ))  ⟩ 
+              ≈⟨ cdr (distr F )  ⟩ 
                   TMap ε b o ( FMap F ( FMap U g)  o FMap F ( TMap η a ) )
               ≈⟨ assoc  ⟩ 
                   ( TMap ε b o  FMap F ( FMap U g) ) o FMap F ( TMap η a ) 
-              ≈⟨ sym ( car ( nat B ε ))  ⟩ 
+              ≈⟨ sym ( car ( nat ε ))  ⟩ 
                   ( g o TMap ε ( FObj F a) )  o FMap F ( TMap η a ) 
               ≈⟨ sym assoc ⟩ 
                   g o ( TMap ε ( FObj F a)   o FMap F ( TMap η a ) )
@@ -182,7 +182,7 @@
     lemma-distr2 a b c f g = let open ≈-Reasoning (A) in
        begin
            ( FMap U (B [(_* um) (A [ η c o g ]) o (_* um)( A [ η b  o f ]) ] ) )  o  η a 
-       ≈⟨ car (IsFunctor.distr ( isFunctor U ))  ⟩
+       ≈⟨ car (distr U )  ⟩
            (( FMap U ((_* um) (A [ η c o g ])) o ( FMap U ((_* um)( A [ η b  o f ])))) )   o  η a 
        ≈⟨ sym assoc ⟩
            ( FMap U ((_* um) (A [ η c o g ])) o (( FMap U ((_* um)( A [ η b  o f ]))))   o  η a )
@@ -253,7 +253,7 @@
     lemma-nat1 a b f = let open ≈-Reasoning (A) in
        begin 
           FMap U ( B [ (um *) (id1 A (FObj U b)) o ((um *) ( η (FObj U b) o FMap U f )) ] )  o η (FObj U a) 
-       ≈⟨ car ( IsFunctor.distr ( isFunctor U ) ) ⟩
+       ≈⟨ car ( distr U  ) ⟩
           ( FMap U  ((um *) (id1 A (FObj U b))) o FMap U ((um *) ( η (FObj U b) o FMap U f )) )  o η (FObj U a) 
        ≈⟨ sym assoc  ⟩
            FMap U  ((um *) (id1 A (FObj U b))) o ( FMap U ((um *) ( η (FObj U b) o FMap U f )))  o η (FObj U a) 
@@ -273,7 +273,7 @@
     lemma-nat2 a b f = let open ≈-Reasoning (A) in
        begin
           FMap U ( B [ f o ((um *) (id1 A (FObj U a ))) ])  o η (FObj U a) 
-       ≈⟨ car ( IsFunctor.distr ( isFunctor U ) ) ⟩
+       ≈⟨ car ( distr U  ) ⟩
           (FMap U f o FMap U ((um *) (id1 A (FObj U a ))))  o η (FObj U a) 
        ≈⟨ sym assoc  ⟩
           FMap U f o ( FMap U ((um *) (id1 A (FObj U a )))  o η (FObj U a)  )
@@ -339,7 +339,7 @@
           lemma-adj1 a =  let open ≈-Reasoning (A) in
              begin
                FMap U ((B [((_* um) ( id1 A (FObj U ( FObj F a )))) o (_* um) (A [  η' (FObj U ( FObj F a )) o ( η' a ) ]) ])) o η' a 
-             ≈⟨ car ( IsFunctor.distr ( isFunctor U))  ⟩
+             ≈⟨ car (distr U)  ⟩
                (FMap U ((_* um) ( id1 A (FObj U ( FObj F a)))) o FMap U ((_* um) (A [  η' (FObj U ( FObj F a )) o ( η' a ) ]))) o η' a 
              ≈⟨ sym assoc ⟩
                FMap U ((_* um) ( id1 A (FObj U ( FObj F a)))) o ( FMap U ((_* um) (A [  η' (FObj U ( FObj F a )) o ( η' a ) ])) o η' a )