changeset 66:51f653bd9656

distr
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Thu, 25 Jul 2013 12:58:21 +0900
parents a04219fa2e0a
children e75436075bf0
files HomReasoning.agda cat-utility.agda nat.agda universal-mapping.agda
diffstat 4 files changed, 21 insertions(+), 21 deletions(-) [+]
line wrap: on
line diff
--- a/HomReasoning.agda	Thu Jul 25 12:13:10 2013 +0900
+++ b/HomReasoning.agda	Thu Jul 25 12:58:21 2013 +0900
@@ -77,15 +77,15 @@
                                   →  f o ( g o h )  ≈ ( f o g ) o h
   assoc =  IsCategory.associative (Category.isCategory A)
 
-  distr :  (T : Functor A A) →  {a b c : Obj A} {g : Hom A b c} { f : Hom A a b }
-     →   FMap T ( g o f  )  ≈  FMap T g o FMap T f 
-  distr T = IsFunctor.distr ( isFunctor T )
+  distr : { c₁′ c₂′ ℓ′ : Level}  {D : Category c₁′ c₂′ ℓ′} (T : Functor D A) →  {a b c : Obj D} {g : Hom D b c} { f : Hom D a b }
+     →   FMap T ( D [ g o f ]  )  ≈  FMap T g o FMap T f 
+  distr {_} T = IsFunctor.distr ( isFunctor T )
 
   open NTrans 
-  nat : { c₁′ c₂′ ℓ′ : Level}  (D : Category c₁′ c₂′ ℓ′) {a b : Obj D} {f : Hom D a b}  {F G : Functor D A }
+  nat : { c₁′ c₂′ ℓ′ : Level}  {D : Category c₁′ c₂′ ℓ′} {a b : Obj D} {f : Hom D a b}  {F G : Functor D A }
       →  (η : NTrans D A F G )
       →   FMap G f  o  TMap η a   ≈ TMap η b  o  FMap F f
-  nat _ η  =  IsNTrans.naturality ( isNTrans η  )
+  nat {_} η  =  IsNTrans.naturality ( isNTrans η  )
 
 
   infixr  2 _∎
--- a/cat-utility.agda	Thu Jul 25 12:13:10 2013 +0900
+++ b/cat-utility.agda	Thu Jul 25 12:58:21 2013 +0900
@@ -90,11 +90,11 @@
          naturality  {a} {b} {f}  = let open ≈-Reasoning (C) in
             begin  
                (FMap F ( FMap H f )) o  ( FMap F (TMap n a))
-            ≈⟨ sym (IsFunctor.distr ( isFunctor F)) ⟩
+            ≈⟨ sym (distr F) ⟩
                FMap F ( B [ (FMap H f)  o TMap n a ])
             ≈⟨ IsFunctor.≈-cong (isFunctor F) ( IsNTrans.naturality ( isNTrans n)  ) ⟩
                FMap F ( B [ (TMap n b ) o FMap G f ] )
-            ≈⟨ IsFunctor.distr ( isFunctor F) ⟩
+            ≈⟨ distr F ⟩
                (FMap F (TMap n b )) o  (FMap F (FMap G f))

 
--- a/nat.agda	Thu Jul 25 12:13:10 2013 +0900
+++ b/nat.agda	Thu Jul 25 12:58:21 2013 +0900
@@ -125,7 +125,7 @@
      join k b f (TMap η a) 
   ≈⟨ refl-hom ⟩
      c [ TMap μ b  o c [  FMap T f o (TMap η a) ] ]  
-  ≈⟨ cdr  ( IsNTrans.naturality ( isNTrans η  )) ⟩
+  ≈⟨ cdr  ( nat η ) ⟩
      c [ TMap μ b  o c [ (TMap η ( FObj T b)) o f ] ] 
   ≈⟨ IsCategory.associative (Category.isCategory c) ⟩
      c [ c [ TMap μ b  o (TMap η ( FObj T b)) ] o f ] 
@@ -170,7 +170,7 @@
      ( ( ( TMap μ d o  ( FMap T h   o   TMap μ c ) ) o  FMap T g ) o f )
    ≈⟨ car (car ( cdr ( begin 
            ( FMap T h o TMap μ c )
-       ≈⟨ nat A μ ⟩
+       ≈⟨ nat μ ⟩
            ( TMap μ (FObj T d) o FMap T (FMap T h) )

    )))  ⟩
@@ -271,7 +271,7 @@
 UεF A B U F ε =  lemma11  (
      Functor*Nat A {B} A U {( F ○ U) ○ F} {identityFunctor ○ F} ( Nat*Functor A {B} B { F ○  U} {identityFunctor} ε F)  ) where
          lemma11 :   NTrans A A   ( U ○ ((F  ○  U) ○  F )) ( U ○  (identityFunctor ○ F) ) 
-                  → NTrans A A  (( U ○  F ) ○ ( U ○  F )) ( U ○  F )
+                  →  NTrans A A  (( U ○  F ) ○ ( U ○  F )) ( U ○  F )
          lemma11  n = record { TMap = \a → TMap n a; isNTrans = record { naturality = IsNTrans.naturality ( isNTrans n ) }}
 
 Adj2Monad : {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ')
@@ -300,11 +300,11 @@
                 TMap μ a o TMap μ ( FObj T a )
              ≈⟨⟩
                 (FMap U (TMap ε ( FObj F a ))) o (FMap U (TMap ε ( FObj F ( FObj U (FObj F  a )))))
-             ≈⟨ sym (IsFunctor.distr (isFunctor U)) ⟩
+             ≈⟨ sym (distr U) ⟩
                 FMap U (B [ TMap ε ( FObj F a )  o TMap ε ( FObj F ( FObj U (FObj F a ))) ] )
              ≈⟨  (IsFunctor.≈-cong (isFunctor U)) (lemma-assoc1 ( TMap ε (FObj F a ))) ⟩
                 FMap U (B [ (TMap ε ( FObj F a )) o FMap F (FMap U (TMap ε ( FObj F a ))) ] )
-             ≈⟨ IsFunctor.distr (isFunctor U) ⟩
+             ≈⟨ distr U ⟩
                 (FMap U (TMap ε ( FObj F a ))) o FMap U (FMap F (FMap U (TMap ε ( FObj F a ))))
              ≈⟨⟩
                 TMap μ a o FMap T (TMap μ a) 
@@ -326,7 +326,7 @@
                 TMap μ a o (FMap T (TMap η a ))
              ≈⟨⟩
                 (FMap U (TMap ε ( FObj F a ))) o (FMap U ( FMap F (TMap η a )))
-             ≈⟨ sym (IsFunctor.distr ( isFunctor U )) ⟩
+             ≈⟨ sym (distr U ) ⟩
                 FMap U ( B [  (TMap ε ( FObj F a )) o ( FMap F (TMap η a )) ])
              ≈⟨ (IsFunctor.≈-cong (isFunctor U)) (IsAdjunction.adjoint2 ( isAdjunction adj )) ⟩
                 FMap U ( id1 B (FObj F a) )
--- a/universal-mapping.agda	Thu Jul 25 12:13:10 2013 +0900
+++ b/universal-mapping.agda	Thu Jul 25 12:58:21 2013 +0900
@@ -87,11 +87,11 @@
                   FMap U ( solution  f) o TMap η a 
               ≈⟨⟩
                   FMap U (  B [ TMap ε b o FMap F f ] ) o TMap η a 
-              ≈⟨ car (IsFunctor.distr ( isFunctor U )) ⟩
+              ≈⟨ car (distr U ) ⟩
                  ( (FMap U (TMap ε b))  o (FMap U ( FMap F f )) ) o TMap η a 
               ≈⟨ sym assoc ⟩
                   (FMap U (TMap ε b))  o ((FMap U ( FMap F f ))  o TMap η a )
-              ≈⟨ cdr (nat A η) ⟩
+              ≈⟨ cdr (nat η) ⟩
                   (FMap U (TMap ε b))  o ((TMap η (FObj U b )) o f )
               ≈⟨ assoc ⟩
                   ((FMap U (TMap ε b))  o (TMap η (FObj U b)))  o f 
@@ -113,11 +113,11 @@
                   TMap ε b o FMap F f
               ≈⟨ cdr (sym ( lemma1 a b f g k )) ⟩ 
                   TMap ε b o FMap F ( A [ FMap U g o  TMap η a ] )
-              ≈⟨ cdr (IsFunctor.distr ( isFunctor F ))  ⟩ 
+              ≈⟨ cdr (distr F )  ⟩ 
                   TMap ε b o ( FMap F ( FMap U g)  o FMap F ( TMap η a ) )
               ≈⟨ assoc  ⟩ 
                   ( TMap ε b o  FMap F ( FMap U g) ) o FMap F ( TMap η a ) 
-              ≈⟨ sym ( car ( nat B ε ))  ⟩ 
+              ≈⟨ sym ( car ( nat ε ))  ⟩ 
                   ( g o TMap ε ( FObj F a) )  o FMap F ( TMap η a ) 
               ≈⟨ sym assoc ⟩ 
                   g o ( TMap ε ( FObj F a)   o FMap F ( TMap η a ) )
@@ -182,7 +182,7 @@
     lemma-distr2 a b c f g = let open ≈-Reasoning (A) in
        begin
            ( FMap U (B [(_* um) (A [ η c o g ]) o (_* um)( A [ η b  o f ]) ] ) )  o  η a 
-       ≈⟨ car (IsFunctor.distr ( isFunctor U ))  ⟩
+       ≈⟨ car (distr U )  ⟩
            (( FMap U ((_* um) (A [ η c o g ])) o ( FMap U ((_* um)( A [ η b  o f ])))) )   o  η a 
        ≈⟨ sym assoc ⟩
            ( FMap U ((_* um) (A [ η c o g ])) o (( FMap U ((_* um)( A [ η b  o f ]))))   o  η a )
@@ -253,7 +253,7 @@
     lemma-nat1 a b f = let open ≈-Reasoning (A) in
        begin 
           FMap U ( B [ (um *) (id1 A (FObj U b)) o ((um *) ( η (FObj U b) o FMap U f )) ] )  o η (FObj U a) 
-       ≈⟨ car ( IsFunctor.distr ( isFunctor U ) ) ⟩
+       ≈⟨ car ( distr U  ) ⟩
           ( FMap U  ((um *) (id1 A (FObj U b))) o FMap U ((um *) ( η (FObj U b) o FMap U f )) )  o η (FObj U a) 
        ≈⟨ sym assoc  ⟩
            FMap U  ((um *) (id1 A (FObj U b))) o ( FMap U ((um *) ( η (FObj U b) o FMap U f )))  o η (FObj U a) 
@@ -273,7 +273,7 @@
     lemma-nat2 a b f = let open ≈-Reasoning (A) in
        begin
           FMap U ( B [ f o ((um *) (id1 A (FObj U a ))) ])  o η (FObj U a) 
-       ≈⟨ car ( IsFunctor.distr ( isFunctor U ) ) ⟩
+       ≈⟨ car ( distr U  ) ⟩
           (FMap U f o FMap U ((um *) (id1 A (FObj U a ))))  o η (FObj U a) 
        ≈⟨ sym assoc  ⟩
           FMap U f o ( FMap U ((um *) (id1 A (FObj U a )))  o η (FObj U a)  )
@@ -339,7 +339,7 @@
           lemma-adj1 a =  let open ≈-Reasoning (A) in
              begin
                FMap U ((B [((_* um) ( id1 A (FObj U ( FObj F a )))) o (_* um) (A [  η' (FObj U ( FObj F a )) o ( η' a ) ]) ])) o η' a 
-             ≈⟨ car ( IsFunctor.distr ( isFunctor U))  ⟩
+             ≈⟨ car (distr U)  ⟩
                (FMap U ((_* um) ( id1 A (FObj U ( FObj F a)))) o FMap U ((_* um) (A [  η' (FObj U ( FObj F a )) o ( η' a ) ]))) o η' a 
              ≈⟨ sym assoc ⟩
                FMap U ((_* um) ( id1 A (FObj U ( FObj F a)))) o ( FMap U ((_* um) (A [  η' (FObj U ( FObj F a )) o ( η' a ) ])) o η' a )