Mercurial > hg > Members > kono > Proof > category
diff src/CCCGraph.agda @ 949:ac53803b3b2a
reorganization for apkg
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 21 Dec 2020 16:40:15 +0900 |
parents | CCCGraph.agda@dca4b29553cb |
children | e2e11014b0f8 |
line wrap: on
line diff
--- /dev/null Thu Jan 01 00:00:00 1970 +0000 +++ b/src/CCCGraph.agda Mon Dec 21 16:40:15 2020 +0900 @@ -0,0 +1,517 @@ +module CCCgraph where + +open import Level +open import Category +open import HomReasoning +open import cat-utility +open import Data.Product renaming (_×_ to _/\_ ) hiding ( <_,_> ) +open import Category.Constructions.Product +open import Relation.Binary.PropositionalEquality hiding ( [_] ) +open import CCC + +open Functor + +-- ccc-1 : Hom A a 1 ≅ {*} +-- ccc-2 : Hom A c (a × b) ≅ (Hom A c a ) × ( Hom A c b ) +-- ccc-3 : Hom A a (c ^ b) ≅ Hom A (a × b) c + +open import Category.Sets + +-- Sets is a CCC + +import Axiom.Extensionality.Propositional +postulate extensionality : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → Axiom.Extensionality.Propositional.Extensionality c₂ c₂ + +data One {c : Level } : Set c where + OneObj : One -- () in Haskell ( or any one object set ) + +sets : {c : Level } → CCC (Sets {c}) +sets = record { + 1 = One + ; ○ = λ _ → λ _ → OneObj + ; _∧_ = _∧_ + ; <_,_> = <,> + ; π = π + ; π' = π' + ; _<=_ = _<=_ + ; _* = _* + ; ε = ε + ; isCCC = isCCC + } where + 1 : Obj Sets + 1 = One + ○ : (a : Obj Sets ) → Hom Sets a 1 + ○ a = λ _ → OneObj + _∧_ : Obj Sets → Obj Sets → Obj Sets + _∧_ a b = a /\ b + <,> : {a b c : Obj Sets } → Hom Sets c a → Hom Sets c b → Hom Sets c ( a ∧ b) + <,> f g = λ x → ( f x , g x ) + π : {a b : Obj Sets } → Hom Sets (a ∧ b) a + π {a} {b} = proj₁ + π' : {a b : Obj Sets } → Hom Sets (a ∧ b) b + π' {a} {b} = proj₂ + _<=_ : (a b : Obj Sets ) → Obj Sets + a <= b = b → a + _* : {a b c : Obj Sets } → Hom Sets (a ∧ b) c → Hom Sets a (c <= b) + f * = λ x → λ y → f ( x , y ) + ε : {a b : Obj Sets } → Hom Sets ((a <= b ) ∧ b) a + ε {a} {b} = λ x → ( proj₁ x ) ( proj₂ x ) + isCCC : CCC.IsCCC Sets 1 ○ _∧_ <,> π π' _<=_ _* ε + isCCC = record { + e2 = e2 + ; e3a = λ {a} {b} {c} {f} {g} → e3a {a} {b} {c} {f} {g} + ; e3b = λ {a} {b} {c} {f} {g} → e3b {a} {b} {c} {f} {g} + ; e3c = e3c + ; π-cong = π-cong + ; e4a = e4a + ; e4b = e4b + ; *-cong = *-cong + } where + e2 : {a : Obj Sets} {f : Hom Sets a 1} → Sets [ f ≈ ○ a ] + e2 {a} {f} = extensionality Sets ( λ x → e20 x ) + where + e20 : (x : a ) → f x ≡ ○ a x + e20 x with f x + e20 x | OneObj = refl + e3a : {a b c : Obj Sets} {f : Hom Sets c a} {g : Hom Sets c b} → + Sets [ ( Sets [ π o ( <,> f g) ] ) ≈ f ] + e3a = refl + e3b : {a b c : Obj Sets} {f : Hom Sets c a} {g : Hom Sets c b} → + Sets [ Sets [ π' o ( <,> f g ) ] ≈ g ] + e3b = refl + e3c : {a b c : Obj Sets} {h : Hom Sets c (a ∧ b)} → + Sets [ <,> (Sets [ π o h ]) (Sets [ π' o h ]) ≈ h ] + e3c = refl + π-cong : {a b c : Obj Sets} {f f' : Hom Sets c a} {g g' : Hom Sets c b} → + Sets [ f ≈ f' ] → Sets [ g ≈ g' ] → Sets [ <,> f g ≈ <,> f' g' ] + π-cong refl refl = refl + e4a : {a b c : Obj Sets} {h : Hom Sets (c ∧ b) a} → + Sets [ Sets [ ε o <,> (Sets [ h * o π ]) π' ] ≈ h ] + e4a = refl + e4b : {a b c : Obj Sets} {k : Hom Sets c (a <= b)} → + Sets [ (Sets [ ε o <,> (Sets [ k o π ]) π' ]) * ≈ k ] + e4b = refl + *-cong : {a b c : Obj Sets} {f f' : Hom Sets (a ∧ b) c} → + Sets [ f ≈ f' ] → Sets [ f * ≈ f' * ] + *-cong refl = refl + + + + +open import graph +module ccc-from-graph {c₁ c₂ : Level } (G : Graph {c₁} {c₂}) where + + open import Relation.Binary.PropositionalEquality renaming ( cong to ≡-cong ) hiding ( [_] ) + open Graph + + data Objs : Set (suc c₁) where + atom : (vertex G) → Objs + ⊤ : Objs + _∧_ : Objs → Objs → Objs + _<=_ : Objs → Objs → Objs + + data Arrows : (b c : Objs ) → Set (suc c₁ ⊔ c₂) + data Arrow : Objs → Objs → Set (suc c₁ ⊔ c₂) where --- case i + arrow : {a b : vertex G} → (edge G) a b → Arrow (atom a) (atom b) + π : {a b : Objs } → Arrow ( a ∧ b ) a + π' : {a b : Objs } → Arrow ( a ∧ b ) b + ε : {a b : Objs } → Arrow ((a <= b) ∧ b ) a + _* : {a b c : Objs } → Arrows (c ∧ b ) a → Arrow c ( a <= b ) --- case v + + data Arrows where + id : ( a : Objs ) → Arrows a a --- case i + ○ : ( a : Objs ) → Arrows a ⊤ --- case i + <_,_> : {a b c : Objs } → Arrows c a → Arrows c b → Arrows c (a ∧ b) -- case iii + iv : {b c d : Objs } ( f : Arrow d c ) ( g : Arrows b d ) → Arrows b c -- cas iv + + _・_ : {a b c : Objs } (f : Arrows b c ) → (g : Arrows a b) → Arrows a c + id a ・ g = g + ○ a ・ g = ○ _ + < f , g > ・ h = < f ・ h , g ・ h > + iv f g ・ h = iv f ( g ・ h ) + + + identityL : {A B : Objs} {f : Arrows A B} → (id B ・ f) ≡ f + identityL = refl + + identityR : {A B : Objs} {f : Arrows A B} → (f ・ id A) ≡ f + identityR {a} {a} {id a} = refl + identityR {a} {⊤} {○ a} = refl + identityR {a} {_} {< f , f₁ >} = cong₂ (λ j k → < j , k > ) identityR identityR + identityR {a} {b} {iv f g} = cong (λ k → iv f k ) identityR + + assoc≡ : {a b c d : Objs} (f : Arrows c d) (g : Arrows b c) (h : Arrows a b) → + (f ・ (g ・ h)) ≡ ((f ・ g) ・ h) + assoc≡ (id a) g h = refl + assoc≡ (○ a) g h = refl + assoc≡ < f , f₁ > g h = cong₂ (λ j k → < j , k > ) (assoc≡ f g h) (assoc≡ f₁ g h) + assoc≡ (iv f f1) g h = cong (λ k → iv f k ) ( assoc≡ f1 g h ) + + -- positive intutionistic calculus + PL : Category (suc c₁) (suc c₁ ⊔ c₂) (suc c₁ ⊔ c₂) + PL = record { + Obj = Objs; + Hom = λ a b → Arrows a b ; + _o_ = λ{a} {b} {c} x y → x ・ y ; + _≈_ = λ x y → x ≡ y ; + Id = λ{a} → id a ; + isCategory = record { + isEquivalence = record {refl = refl ; trans = trans ; sym = sym} ; + identityL = λ {a b f} → identityL {a} {b} {f} ; + identityR = λ {a b f} → identityR {a} {b} {f} ; + o-resp-≈ = λ {a b c f g h i} → o-resp-≈ {a} {b} {c} {f} {g} {h} {i} ; + associative = λ{a b c d f g h } → assoc≡ f g h + } + } where + o-resp-≈ : {A B C : Objs} {f g : Arrows A B} {h i : Arrows B C} → + f ≡ g → h ≡ i → (h ・ f) ≡ (i ・ g) + o-resp-≈ refl refl = refl + +-------- +-- +-- Functor from Positive Logic to Sets +-- + + -- open import Category.Sets + -- postulate extensionality : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → Relation.Binary.PropositionalEquality.Extensionalit y c₂ c₂ + + open import Data.List + + C = graphtocat.Chain G + + tr : {a b : vertex G} → edge G a b → ((y : vertex G) → C y a) → (y : vertex G) → C y b + tr f x y = graphtocat.next f (x y) + + fobj : ( a : Objs ) → Set (c₁ ⊔ c₂) + fobj (atom x) = ( y : vertex G ) → C y x + fobj ⊤ = One + fobj (a ∧ b) = ( fobj a /\ fobj b) + fobj (a <= b) = fobj b → fobj a + + fmap : { a b : Objs } → Hom PL a b → fobj a → fobj b + amap : { a b : Objs } → Arrow a b → fobj a → fobj b + amap (arrow x) y = tr x y -- tr x + amap π ( x , y ) = x + amap π' ( x , y ) = y + amap ε (f , x ) = f x + amap (f *) x = λ y → fmap f ( x , y ) + fmap (id a) x = x + fmap (○ a) x = OneObj + fmap < f , g > x = ( fmap f x , fmap g x ) + fmap (iv x f) a = amap x ( fmap f a ) + +-- CS is a map from Positive logic to Sets +-- Sets is CCC, so we have a cartesian closed category generated by a graph +-- as a sub category of Sets + + CS : Functor PL (Sets {c₁ ⊔ c₂}) + FObj CS a = fobj a + FMap CS {a} {b} f = fmap {a} {b} f + isFunctor CS = isf where + _+_ = Category._o_ PL + ++idR = IsCategory.identityR ( Category.isCategory PL ) + distr : {a b c : Obj PL} { f : Hom PL a b } { g : Hom PL b c } → (z : fobj a ) → fmap (g + f) z ≡ fmap g (fmap f z) + distr {a} {a₁} {a₁} {f} {id a₁} z = refl + distr {a} {a₁} {⊤} {f} {○ a₁} z = refl + distr {a} {b} {c ∧ d} {f} {< g , g₁ >} z = cong₂ (λ j k → j , k ) (distr {a} {b} {c} {f} {g} z) (distr {a} {b} {d} {f} {g₁} z) + distr {a} {b} {c} {f} {iv {_} {_} {d} x g} z = adistr (distr {a} {b} {d} {f} {g} z) x where + adistr : fmap (g + f) z ≡ fmap g (fmap f z) → + ( x : Arrow d c ) → fmap ( iv x (g + f) ) z ≡ fmap ( iv x g ) (fmap f z ) + adistr eq x = cong ( λ k → amap x k ) eq + isf : IsFunctor PL Sets fobj fmap + IsFunctor.identity isf = extensionality Sets ( λ x → refl ) + IsFunctor.≈-cong isf refl = refl + IsFunctor.distr isf {a} {b} {c} {g} {f} = extensionality Sets ( λ z → distr {a} {b} {c} {g} {f} z ) + +--- +--- SubCategoy SC F A is a category with Obj = FObj F, Hom = FMap +--- +--- CCC ( SC (CS G)) Sets have to be proved +--- SM can be eliminated if we have +--- sobj (a : vertex g ) → {a} a set have only a +--- smap (a b : vertex g ) → {a} → {b} + + +record CCCObj {c₁ c₂ ℓ : Level} : Set (suc (ℓ ⊔ (c₂ ⊔ c₁))) where + field + cat : Category c₁ c₂ ℓ + ≡←≈ : {a b : Obj cat } → { f g : Hom cat a b } → cat [ f ≈ g ] → f ≡ g + ccc : CCC cat + +open CCCObj + +record CCCMap {c₁ c₂ ℓ c₁′ c₂′ ℓ′ : Level} (A : CCCObj {c₁} {c₂} {ℓ} ) (B : CCCObj {c₁′} {c₂′}{ℓ′} ) : Set (suc (ℓ′ ⊔ (c₂′ ⊔ c₁′) ⊔ ℓ ⊔ (c₂ ⊔ c₁))) where + field + cmap : Functor (cat A ) (cat B ) + ccf : CCC (cat A) → CCC (cat B) + +open import Category.Cat + +open CCCMap +open import Relation.Binary + +Cart : {c₁ c₂ ℓ : Level} → Category (suc (c₁ ⊔ c₂ ⊔ ℓ)) (suc (ℓ ⊔ (c₂ ⊔ c₁))) (suc (ℓ ⊔ c₁ ⊔ c₂)) +Cart {c₁} {c₂} {ℓ} = record { + Obj = CCCObj {c₁} {c₂} {ℓ} + ; Hom = CCCMap + ; _o_ = λ {A} {B} {C} f g → record { cmap = (cmap f) ○ ( cmap g ) ; ccf = λ _ → ccf f ( ccf g (ccc A )) } + ; _≈_ = λ {a} {b} f g → cmap f ≃ cmap g + ; Id = λ {a} → record { cmap = identityFunctor ; ccf = λ x → x } + ; isCategory = record { + isEquivalence = λ {A} {B} → record { + refl = λ {f} → let open ≈-Reasoning (CAT) in refl-hom {cat A} {cat B} {cmap f} + ; sym = λ {f} {g} → let open ≈-Reasoning (CAT) in sym-hom {cat A} {cat B} {cmap f} {cmap g} + ; trans = λ {f} {g} {h} → let open ≈-Reasoning (CAT) in trans-hom {cat A} {cat B} {cmap f} {cmap g} {cmap h} } + ; identityL = λ {x} {y} {f} → let open ≈-Reasoning (CAT) in idL {cat x} {cat y} {cmap f} {_} {_} + ; identityR = λ {x} {y} {f} → let open ≈-Reasoning (CAT) in idR {cat x} {cat y} {cmap f} + ; o-resp-≈ = λ {x} {y} {z} {f} {g} {h} {i} → IsCategory.o-resp-≈ ( Category.isCategory CAT) {cat x}{cat y}{cat z} {cmap f} {cmap g} {cmap h} {cmap i} + ; associative = λ {a} {b} {c} {d} {f} {g} {h} → let open ≈-Reasoning (CAT) in assoc {cat a} {cat b} {cat c} {cat d} {cmap f} {cmap g} {cmap h} + }} + +open import graph +open Graph + +record GMap {c₁ c₂ c₁' c₂' : Level} (x : Graph {c₁} {c₂} ) (y : Graph {c₁'} {c₂'} ) : Set (c₁ ⊔ c₂ ⊔ c₁' ⊔ c₂') where + field + vmap : vertex x → vertex y + emap : {a b : vertex x} → edge x a b → edge y (vmap a) (vmap b) + +open GMap + +open import Relation.Binary.HeterogeneousEquality using (_≅_;refl ) renaming ( sym to ≅-sym ; trans to ≅-trans ; cong to ≅-cong ) + +data [_]_==_ {c₁ c₂ : Level} (C : Graph {c₁} {c₂}) {A B : vertex C} (f : edge C A B) + : ∀{X Y : vertex C} → edge C X Y → Set (c₁ ⊔ c₂ ) where + mrefl : {g : edge C A B} → (eqv : f ≡ g ) → [ C ] f == g + +eq-vertex1 : {c₁ c₂ : Level} (C : Graph {c₁} {c₂}) {A B : vertex C} {f : edge C A B} + {X Y : vertex C} → {g : edge C X Y } → ( [ C ] f == g ) → A ≡ X +eq-vertex1 _ (mrefl refl) = refl + +eq-vertex2 : {c₁ c₂ : Level} (C : Graph {c₁} {c₂}) {A B : vertex C} {f : edge C A B} + {X Y : vertex C} → {g : edge C X Y } → ( [ C ] f == g ) → B ≡ Y +eq-vertex2 _ (mrefl refl) = refl + +eq-edge : {c₁ c₂ : Level} (C : Graph {c₁} {c₂}) {A B : vertex C} {f : edge C A B} + {X Y : vertex C} → {g : edge C X Y } → ( [ C ] f == g ) → f ≅ g +eq-edge C eq with eq-vertex1 C eq | eq-vertex2 C eq +eq-edge C (mrefl refl) | refl | refl = refl + +_=m=_ : {c₁ c₂ c₁' c₂' : Level} {C : Graph {c₁} {c₂} } {D : Graph {c₁'} {c₂'} } + → (F G : GMap C D) → Set (c₁ ⊔ c₂ ⊔ c₁' ⊔ c₂') +_=m=_ {C = C} {D = D} F G = ∀{A B : vertex C} → (f : edge C A B) → [ D ] emap F f == emap G f + +_&_ : {c₁ c₂ c₁' c₂' c₁'' c₂'' : Level} {x : Graph {c₁} {c₂}} {y : Graph {c₁'} {c₂'}} {z : Graph {c₁''} {c₂''} } ( f : GMap y z ) ( g : GMap x y ) → GMap x z +f & g = record { vmap = λ x → vmap f ( vmap g x ) ; emap = λ x → emap f ( emap g x ) } + +Grph : {c₁ c₂ : Level} → Category (suc (c₁ ⊔ c₂)) (c₁ ⊔ c₂) (c₁ ⊔ c₂) +Grph {c₁} {c₂} = record { + Obj = Graph {c₁} {c₂} + ; Hom = GMap + ; _o_ = _&_ + ; _≈_ = _=m=_ + ; Id = record { vmap = λ y → y ; emap = λ f → f } + ; isCategory = record { + isEquivalence = λ {A} {B} → ise + ; identityL = λ e → mrefl refl + ; identityR = λ e → mrefl refl + ; o-resp-≈ = m--resp-≈ + ; associative = λ e → mrefl refl + }} where + msym : {x y : Graph {c₁} {c₂} } { f g : GMap x y } → f =m= g → g =m= f + msym {x} {y} f=g f = lemma ( f=g f ) where + lemma : ∀{a b c d} {f : edge y a b} {g : edge y c d} → [ y ] f == g → [ y ] g == f + lemma (mrefl Ff≈Gf) = mrefl (sym Ff≈Gf) + mtrans : {x y : Graph {c₁} {c₂} } { f g h : GMap x y } → f =m= g → g =m= h → f =m= h + mtrans {x} {y} f=g g=h f = lemma ( f=g f ) ( g=h f ) where + lemma : ∀{a b c d e f} {p : edge y a b} {q : edge y c d} → {r : edge y e f} → [ y ] p == q → [ y ] q == r → [ y ] p == r + lemma (mrefl eqv) (mrefl eqv₁) = mrefl ( trans eqv eqv₁ ) + ise : {x y : Graph {c₁} {c₂} } → IsEquivalence {_} {c₁ ⊔ c₂} {_} ( _=m=_ {_} {_} {_} {_} {x} {y}) + ise = record { + refl = λ f → mrefl refl + ; sym = msym + ; trans = mtrans + } + m--resp-≈ : {A B C : Graph {c₁} {c₂} } + {f g : GMap A B} {h i : GMap B C} → f =m= g → h =m= i → ( h & f ) =m= ( i & g ) + m--resp-≈ {A} {B} {C} {f} {g} {h} {i} f=g h=i e = + lemma (emap f e) (emap g e) (emap i (emap g e)) (f=g e) (h=i ( emap g e )) where + lemma : {a b c d : vertex B } {z w : vertex C } (ϕ : edge B a b) (ψ : edge B c d) (π : edge C z w) → + [ B ] ϕ == ψ → [ C ] (emap h ψ) == π → [ C ] (emap h ϕ) == π + lemma _ _ _ (mrefl refl) (mrefl refl) = mrefl refl + +--- Forgetful functor + +module forgetful {c₁ c₂ : Level} where + + ≃-cong : {c₁ c₂ ℓ : Level} (B : Category c₁ c₂ ℓ ) → {a b a' b' : Obj B } + → { f f' : Hom B a b } + → { g g' : Hom B a' b' } + → [_]_~_ B f g → B [ f ≈ f' ] → B [ g ≈ g' ] → [_]_~_ B f' g' + ≃-cong B {a} {b} {a'} {b'} {f} {f'} {g} {g'} (refl {g2} eqv) f=f' g=g' = let open ≈-Reasoning B in refl {_} {_} {_} {B} {a'} {b'} {f'} {g'} ( begin + f' + ≈↑⟨ f=f' ⟩ + f + ≈⟨ eqv ⟩ + g + ≈⟨ g=g' ⟩ + g' + ∎ ) + + -- Grph does not allow morph on different level graphs + -- simply assumes we have iso to the another level. This may means same axiom on CCCs results the same CCCs. + postulate + g21 : Graph {suc c₁} {c₁ ⊔ c₂} → Graph {c₁} {c₂} + m21 : (g : Graph {suc c₁ } {c₁ ⊔ c₂} ) → GMap {suc c₁ } {c₁ ⊔ c₂} {c₁} {c₂} g (g21 g) + m12 : (g : Graph {suc c₁ } {c₁ ⊔ c₂} ) → GMap {c₁} {c₂} {suc c₁ } {c₁ ⊔ c₂} (g21 g) g + giso→ : { g : Graph {suc c₁ } {c₁ ⊔ c₂} } + → {a b : vertex g } → (m12 g & m21 g) =m= id1 Grph g + giso← : { g : Graph {suc c₁ } {c₁ ⊔ c₂} } + → {a b : vertex (g21 g) } → (m21 g & m12 g ) =m= id1 Grph (g21 g) + -- Grph [ Grph [ m21 g o m12 g ] ≈ id1 Grph (g21 g) ] + + uobj : Obj (Cart {suc c₁ } {c₁ ⊔ c₂} {c₁ ⊔ c₂}) → Obj Grph + uobj a = record { vertex = Obj (cat a) ; edge = Hom (cat a) } + umap : {a b : Obj (Cart {suc c₁ } {c₁ ⊔ c₂} {c₁ ⊔ c₂} ) } → Hom (Cart ) a b → Hom (Grph {c₁} {c₂}) (g21 ( uobj a )) (g21 ( uobj b )) + umap {a} {b} f = record { + vmap = λ e → vmap (m21 (uobj b)) (FObj (cmap f) (vmap (m12 (uobj a)) e )) + ; emap = λ e → emap (m21 (uobj b)) (FMap (cmap f) (emap (m12 (uobj a)) e )) } + + UX : Functor (Cart {suc c₁} {c₁ ⊔ c₂} {c₁ ⊔ c₂}) (Grph {c₁} {c₂}) + FObj UX a = g21 (uobj a) + FMap UX f = umap f + isFunctor UX = isf where + isf : IsFunctor Cart Grph (λ z → g21 (uobj z)) umap + IsFunctor.identity isf {a} {b} {f} = begin + umap (id1 Cart a) + ≈⟨⟩ + umap {a} {a} (record { cmap = identityFunctor ; ccf = λ x → x }) + ≈⟨⟩ + record { vmap = λ e → vmap (m21 (uobj a)) (vmap (m12 (uobj a)) e ) ; emap = λ e → emap (m21 (uobj a)) (emap (m12 (uobj a)) e )} + ≈⟨ giso← {uobj a} {f} {f} ⟩ + record { vmap = λ y → y ; emap = λ f → f } + ≈⟨⟩ + id1 Grph (g21 (uobj a)) + ∎ where open ≈-Reasoning Grph + IsFunctor.distr isf {a} {b} {c} {f} {g} = begin + umap ( Cart [ g o f ] ) + ≈⟨⟩ + ( m21 (uobj c) & ( record { vmap = λ e → FObj (cmap (( Cart [ g o f ] ))) e ; emap = λ e → FMap (cmap (( Cart [ g o f ] ))) e} & m12 (uobj a) ) ) + ≈⟨ {!!} ⟩ +-- ( m21 (uobj c) & (record { vmap = λ e → FObj (cmap g) (FObj (cmap f) e) ; emap = λ e → FMap (cmap g) (FMap (cmap f) e) } +-- & m12 (uobj a))) +-- ≈⟨ cdr (cdr (car (giso← {uobj b} ))) ⟩ +-- ( m21 (uobj c) & (record { vmap = λ e → FObj (cmap g) e ; emap = λ e → FMap (cmap g) e} +-- & ((m12 (uobj b) +-- & (m21 (uobj b))) & (record { vmap = λ e → FObj (cmap f) e ; emap = λ e → FMap (cmap f) e} +-- & (m12 (uobj a) ))))) +-- ≈⟨⟩ + Grph [ umap g o umap f ] + ∎ where open ≈-Reasoning Grph + IsFunctor.≈-cong isf {a} {b} {f} {g} f=g e = {!!} where -- lemma ( (extensionality Sets ( λ z → lemma4 ( + -- ≃-cong (cat b) (f=g (id1 (cat a) z)) (IsFunctor.identity (Functor.isFunctor (cmap f))) (IsFunctor.identity (Functor.isFunctor (cmap g))) + -- )))) (f=g e) where + lemma4 : {x y : vertex (uobj b)} → [_]_~_ (cat b) (id1 (cat b) x) (id1 (cat b) y) → x ≡ y + lemma4 (refl eqv) = refl + -- lemma : vmap (umap f) ≡ vmap (umap g) → [ cat b ] FMap (cmap f) e ~ FMap (cmap g) e → [ g21 (uobj b)] emap (umap f) {!!} == emap (umap g) {!!} + -- lemma = {!!} -- refl (refl eqv) = mrefl (≡←≈ b eqv) + + +open ccc-from-graph.Objs +open ccc-from-graph.Arrow +open ccc-from-graph.Arrows +open graphtocat.Chain + +Sets0 : {c₂ : Level } → Category (suc c₂) c₂ c₂ +Sets0 {c₂} = Sets {c₂} + +module fcat {c₁ c₂ : Level} ( g : Graph {c₁} {c₂} ) where + + open ccc-from-graph g + + FCat : Obj (Cart {suc c₁} {c₁ ⊔ c₂} {c₁ ⊔ c₂}) + FCat = record { cat = record { + Obj = Obj PL + ; Hom = λ a b → Hom B (FObj CS a) (FObj CS b) + ; _o_ = Category._o_ B + ; _≈_ = Category._≈_ B + ; Id = λ {a} → id1 B (FObj CS a) + ; isCategory = record { + isEquivalence = IsCategory.isEquivalence (Category.isCategory B) ; + identityL = λ {a b f} → IsCategory.identityL (Category.isCategory B) ; + identityR = λ {a b f} → IsCategory.identityR (Category.isCategory B) ; + o-resp-≈ = λ {a b c f g h i} → IsCategory.o-resp-≈ (Category.isCategory B); + associative = {!!} -- IsCategory.associative (Category.isCategory B) + } + } ; + ≡←≈ = λ eq → eq ; + ccc = {!!} + } where + B = Sets {c₁ ⊔ c₂} + + -- Hom FCat is an image of Fucntor CS, but I don't know how to write it + postulate + fcat-pl : {a b : Obj (cat FCat) } → Hom (cat FCat) a b → Hom PL a b + fcat-eq : {a b : Obj (cat FCat) } → (f : Hom (cat FCat) a b ) → FMap CS (fcat-pl f) ≡ f + + +ccc-graph-univ : {c₁ c₂ : Level} → UniversalMapping (Grph {c₁} {c₂}) (Cart {suc c₁ } {c₁ ⊔ c₂} {c₁ ⊔ c₂}) forgetful.UX +ccc-graph-univ {c₁} {c₂} = record { + F = F ; + η = η ; + _* = solution ; + isUniversalMapping = record { + universalMapping = {!!} ; + uniquness = {!!} + } + } where + open forgetful + open ccc-from-graph + -- + -- + -- η : Hom Grph a (FObj UX (F a)) + -- f : edge g x y -----------------------------------> m21 (record {vertex = fobj (atom x) ; edge = fmap h }) : Graph + -- Graph g x ----------------------> y : vertex g ↑ + -- arrow f : Hom (PL g) (atom x) (atom y) | + -- PL g atom x ------------------> atom y : Obj (PL g) | UX : Functor Sets Graph + -- | | + -- | Functor (CS g) | + -- ↓ | + -- Sets ((z : vertx g) → C z x) ----> ((z : vertx g) → C z y) = h : Hom Sets (fobj (atom x)) (fobj (atom y)) + -- + F : Obj (Grph {c₁} {c₂}) → Obj (Cart {suc c₁} {c₁ ⊔ c₂} {c₁ ⊔ c₂}) + F g = FCat where open fcat g + η : (a : Obj (Grph {c₁} {c₂}) ) → Hom Grph a (FObj UX (F a)) + η a = record { vmap = λ y → vm y ; emap = λ f → em f } where + fo : Graph {suc c₁ } {c₁ ⊔ c₂} + fo = uobj {c₁} {c₂} (F a) + vm : (y : vertex a ) → vertex (g21 fo) + vm y = vmap (m21 fo) (atom y) + em : { x y : vertex a } (f : edge a x y ) → edge (FObj UX (F a)) (vm x) (vm y) + em {x} {y} f = emap (m21 fo) (fmap a (iv (arrow f) (id _))) + pl : {c₁ c₂ : Level} → (g : Graph {c₁} {c₂} ) → Category _ _ _ + pl g = PL g + cobj : {g : Obj (Grph {c₁} {c₂} ) } {c : Obj Cart} → Hom Grph g (FObj UX c) → Objs g → Obj (cat c) + cobj {g} {c} f (atom x) = vmap (m12 (uobj {c₁} {c₂} c)) (vmap f x) + cobj {g} {c} f ⊤ = CCC.1 (ccc c) + cobj {g} {c} f (x ∧ y) = CCC._∧_ (ccc c) (cobj {g} {c} f x) (cobj {g} {c} f y) + cobj {g} {c} f (b <= a) = CCC._<=_ (ccc c) (cobj {g} {c} f b) (cobj {g} {c} f a) + c-map : {g : Obj (Grph )} {c : Obj Cart} {A B : Objs g} + → (f : Hom Grph g (FObj UX c) ) → (fobj g A → fobj g B) → Hom (cat c) (cobj {g} {c} f A) (cobj {g} {c} f B) + c-map {g} {c} {a} {atom b} f y with fcat.fcat-pl {c₁} {c₂} g {a} {atom b} y + c-map {g} {c} {atom b} {atom b} f y | id (atom b) = id1 (cat c) _ + c-map {g} {c} {a} {atom b} f y | iv {_} {_} {d} (arrow x) t = {!!} + -- (cat c) [ emap (m12 (uobj {c₁} {c₂} c)) ( emap f x) o c-map {g} {c} {a} {d} f (fmap g t) ] + c-map {g} {c} {a} {atom b} f y | iv {_} {_} {d} π t = {!!} --(cat c) [ CCC.π (ccc c) o c-map {g} {c} {a} {d} f (fmap g t)] + c-map {g} {c} {a} {atom b} f y | iv {_} {_} {d} π' t = {!!} -- (cat c) [ CCC.π' (ccc c) o c-map {g} {c} {a} {d} f (fmap g t) ] + c-map {g} {c} {a} {atom b} f y | iv {_} {_} {d} ε t = {!!} -- (cat c) [ CCC.ε (ccc c) o c-map {g} {c} {a} {d} f (fmap g t) ] + -- with emap (m12 (uobj {c₁} {c₂} c)) ( emap f {!!} ) + c-map {g} {c} {a} {⊤} f x = CCC.○ (ccc c) (cobj f a) + c-map {g} {c} {a} {x ∧ y} f z = CCC.<_,_> (ccc c) (c-map f (λ k → proj₁ (z k))) (c-map f (λ k → proj₂ (z k))) + c-map {g} {c} {d} {b <= a} f x = CCC._* (ccc c) ( c-map f (λ k → x (proj₁ k) (proj₂ k))) + solution : {g : Obj Grph } {c : Obj Cart } → Hom Grph g (FObj UX c) → Hom Cart (F g) c + solution {g} {c} f = record { cmap = record { + FObj = λ x → cobj {g} {c} f x ; + FMap = λ {x} {y} h → c-map {g} {c} {x} {y} f h ; + isFunctor = {!!} } ; + ccf = {!!} }