Mercurial > hg > Members > kono > Proof > category
view src/CCCGraph.agda @ 1124:f683d96fbc93 default tip
safe fix done
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 07 Jul 2024 22:28:50 +0900 |
parents | 5620d4a85069 |
children |
line wrap: on
line source
{-# OPTIONS --cubical-compatible --safe #-} module CCCgraph where open import Level open import Category open import HomReasoning open import Definitions open import Data.Product renaming (_×_ to _/\_ ) hiding ( <_,_> ) open import Category.Constructions.Product open import Relation.Binary.PropositionalEquality hiding ( [_] ) open import CCC open Functor -- ccc-1 : Hom A a 1 ≅ {*} -- ccc-2 : Hom A c (a × b) ≅ (Hom A c a ) × ( Hom A c b ) -- ccc-3 : Hom A a (c ^ b) ≅ Hom A (a × b) c open import Category.Sets -- import Axiom.Extensionality.Propositional -- postulate extensionality : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → Axiom.Extensionality.Propositional.Extensionality c₂ c₂ open import CCCSets --- --- SubCategoy SC F A is a category with Obj = FObj F, Hom = FMap --- --- CCC ( SC (CS G)) Sets have to be proved --- SM can be eliminated if we have --- sobj (a : vertex g ) → {a} a set have only a --- smap (a b : vertex g ) → {a} → {b} record CCCObj {c₁ c₂ ℓ : Level} : Set (suc (ℓ ⊔ (c₂ ⊔ c₁))) where field cat : Category c₁ c₂ ℓ ≡←≈ : {a b : Obj cat } → { f g : Hom cat a b } → cat [ f ≈ g ] → f ≡ g ccc : CCC cat open CCCObj record CCCMap {c₁ c₂ ℓ c₁′ c₂′ ℓ′ : Level} (A : CCCObj {c₁} {c₂} {ℓ} ) (B : CCCObj {c₁′} {c₂′}{ℓ′} ) : Set (suc (ℓ′ ⊔ (c₂′ ⊔ c₁′) ⊔ ℓ ⊔ (c₂ ⊔ c₁))) where field cmap : Functor (cat A ) (cat B ) ccf : CCC (cat A) → CCC (cat B) open import Category.Cat open CCCMap open import Relation.Binary Cart : {c₁ c₂ ℓ : Level} → Category (suc (c₁ ⊔ c₂ ⊔ ℓ)) (suc (ℓ ⊔ (c₂ ⊔ c₁))) (suc (ℓ ⊔ c₁ ⊔ c₂)) Cart {c₁} {c₂} {ℓ} = record { Obj = CCCObj {c₁} {c₂} {ℓ} ; Hom = CCCMap ; _o_ = λ {A} {B} {C} f g → record { cmap = (cmap f) ○ ( cmap g ) ; ccf = λ _ → ccf f ( ccf g (ccc A )) } ; _≈_ = λ {a} {b} f g → cmap f ≃ cmap g ; Id = λ {a} → record { cmap = identityFunctor ; ccf = λ x → x } ; isCategory = record { isEquivalence = λ {A} {B} → record { refl = λ {f} → let open ≈-Reasoning (CAT) in refl-hom {cat A} {cat B} {cmap f} ; sym = λ {f} {g} → let open ≈-Reasoning (CAT) in sym-hom {cat A} {cat B} {cmap f} {cmap g} ; trans = λ {f} {g} {h} → let open ≈-Reasoning (CAT) in trans-hom {cat A} {cat B} {cmap f} {cmap g} {cmap h} } ; identityL = λ {x} {y} {f} → let open ≈-Reasoning (CAT) in idL {cat x} {cat y} {cmap f} {_} {_} ; identityR = λ {x} {y} {f} → let open ≈-Reasoning (CAT) in idR {cat x} {cat y} {cmap f} ; o-resp-≈ = λ {x} {y} {z} {f} {g} {h} {i} → IsCategory.o-resp-≈ ( Category.isCategory CAT) {cat x}{cat y}{cat z} {cmap f} {cmap g} {cmap h} {cmap i} ; associative = λ {a} {b} {c} {d} {f} {g} {h} → let open ≈-Reasoning (CAT) in assoc {cat a} {cat b} {cat c} {cat d} {cmap f} {cmap g} {cmap h} }} open import graph open Graph record GMap {c₁ c₂ c₁' c₂' : Level} (x : Graph {c₁} {c₂} ) (y : Graph {c₁'} {c₂'} ) : Set (c₁ ⊔ c₂ ⊔ c₁' ⊔ c₂') where field vmap : vertex x → vertex y emap : {a b : vertex x} → edge x a b → edge y (vmap a) (vmap b) open GMap open import Relation.Binary.HeterogeneousEquality using (_≅_;refl ) renaming ( sym to ≅-sym ; trans to ≅-trans ; cong to ≅-cong ) data [_]_==_ {c₁ c₂ : Level} (C : Graph {c₁} {c₂}) {A B : vertex C} (f : edge C A B) : ∀{X Y : vertex C} → edge C X Y → Set (c₁ ⊔ c₂ ) where mrefl : {g : edge C A B} → (eqv : f ≡ g ) → [ C ] f == g eq-vertex1 : {c₁ c₂ : Level} (C : Graph {c₁} {c₂}) {A B : vertex C} {f : edge C A B} {X Y : vertex C} → {g : edge C X Y } → ( [ C ] f == g ) → A ≡ X eq-vertex1 _ (mrefl refl) = refl eq-vertex2 : {c₁ c₂ : Level} (C : Graph {c₁} {c₂}) {A B : vertex C} {f : edge C A B} {X Y : vertex C} → {g : edge C X Y } → ( [ C ] f == g ) → B ≡ Y eq-vertex2 _ (mrefl refl) = refl eq-edge : {c₁ c₂ : Level} (C : Graph {c₁} {c₂}) {A B : vertex C} {f : edge C A B} {X Y : vertex C} → {g : edge C X Y } → ( [ C ] f == g ) → f ≅ g eq-edge C eq with eq-vertex1 C eq | eq-vertex2 C eq eq-edge C (mrefl refl) | refl | refl = refl _=m=_ : {c₁ c₂ c₁' c₂' : Level} {C : Graph {c₁} {c₂} } {D : Graph {c₁'} {c₂'} } → (F G : GMap C D) → Set (c₁ ⊔ c₂ ⊔ c₁' ⊔ c₂') _=m=_ {C = C} {D = D} F G = ∀{A B : vertex C} → (f : edge C A B) → [ D ] emap F f == emap G f _&_ : {c₁ c₂ c₁' c₂' c₁'' c₂'' : Level} {x : Graph {c₁} {c₂}} {y : Graph {c₁'} {c₂'}} {z : Graph {c₁''} {c₂''} } ( f : GMap y z ) ( g : GMap x y ) → GMap x z f & g = record { vmap = λ x → vmap f ( vmap g x ) ; emap = λ x → emap f ( emap g x ) } Grph : {c₁ c₂ : Level} → Category (suc (c₁ ⊔ c₂)) (c₁ ⊔ c₂) (c₁ ⊔ c₂) Grph {c₁} {c₂} = record { Obj = Graph {c₁} {c₂} ; Hom = GMap ; _o_ = _&_ ; _≈_ = _=m=_ ; Id = record { vmap = λ y → y ; emap = λ f → f } ; isCategory = record { isEquivalence = λ {A} {B} → ise ; identityL = λ e → mrefl refl ; identityR = λ e → mrefl refl ; o-resp-≈ = m--resp-≈ ; associative = λ e → mrefl refl }} where msym : {x y : Graph {c₁} {c₂} } { f g : GMap x y } → f =m= g → g =m= f msym {x} {y} f=g f = lemma ( f=g f ) where lemma : ∀{a b c d} {f : edge y a b} {g : edge y c d} → [ y ] f == g → [ y ] g == f lemma (mrefl Ff≈Gf) = mrefl (sym Ff≈Gf) mtrans : {x y : Graph {c₁} {c₂} } { f g h : GMap x y } → f =m= g → g =m= h → f =m= h mtrans {x} {y} f=g g=h f = lemma ( f=g f ) ( g=h f ) where lemma : ∀{a b c d e f} {p : edge y a b} {q : edge y c d} → {r : edge y e f} → [ y ] p == q → [ y ] q == r → [ y ] p == r lemma (mrefl eqv) (mrefl eqv₁) = mrefl ( trans eqv eqv₁ ) ise : {x y : Graph {c₁} {c₂} } → IsEquivalence {_} {c₁ ⊔ c₂} {_} ( _=m=_ {_} {_} {_} {_} {x} {y}) ise = record { refl = λ f → mrefl refl ; sym = msym ; trans = mtrans } m--resp-≈ : {A B C : Graph {c₁} {c₂} } {f g : GMap A B} {h i : GMap B C} → f =m= g → h =m= i → ( h & f ) =m= ( i & g ) m--resp-≈ {A} {B} {C} {f} {g} {h} {i} f=g h=i e = lemma (emap f e) (emap g e) (emap i (emap g e)) (f=g e) (h=i ( emap g e )) where lemma : {a b c d : vertex B } {z w : vertex C } (ϕ : edge B a b) (ψ : edge B c d) (π : edge C z w) → [ B ] ϕ == ψ → [ C ] (emap h ψ) == π → [ C ] (emap h ϕ) == π lemma _ _ _ (mrefl refl) (mrefl refl) = mrefl refl --- Forgetful functor module forgetful {c₁ : Level} where ≃-cong : {c₁ ℓ : Level} (B : Category c₁ c₁ ℓ ) → {a b a' b' : Obj B } → { f f' : Hom B a b } → { g g' : Hom B a' b' } → [_]_~_ B f g → B [ f ≈ f' ] → B [ g ≈ g' ] → [_]_~_ B f' g' ≃-cong B {a} {b} {a'} {b'} {f} {f'} {g} {g'} (refl {g2} eqv) f=f' g=g' = let open ≈-Reasoning B in refl {_} {_} {_} {B} {a'} {b'} {f'} {g'} ( begin f' ≈↑⟨ f=f' ⟩ f ≈⟨ eqv ⟩ g ≈⟨ g=g' ⟩ g' ∎ ) ≃→a=a : {c₁ ℓ : Level} (B : Category c₁ c₁ ℓ ) → {a b a' b' : Obj B } → ( f : Hom B a b ) → ( g : Hom B a' b' ) → [_]_~_ B f g → a ≡ a' ≃→a=a B f g (refl eqv) = refl ≃→b=b : {c₁ ℓ : Level} (B : Category c₁ c₁ ℓ ) → {a b a' b' : Obj B } → ( f : Hom B a b ) → ( g : Hom B a' b' ) → [_]_~_ B f g → b ≡ b' ≃→b=b B f g (refl eqv) = refl -- Grph does not allow morph on different level graphs -- simply assumes c₁ and c₂ has the same uobj : Obj (Cart {c₁ } {c₁} {c₁}) → Obj Grph uobj a = record { vertex = Obj (cat a) ; edge = Hom (cat a) } umap : {a b : Obj (Cart {c₁ } {c₁} {c₁} ) } → Hom (Cart ) a b → Hom (Grph {c₁} {c₁}) (( uobj a )) (( uobj b )) umap {a} {b} f = record { vmap = λ e → FObj (cmap f) e ; emap = λ e → FMap (cmap f) e } UX : Functor (Cart {c₁} {c₁} {c₁}) (Grph {c₁} {c₁}) FObj UX a = (uobj a) FMap UX f = umap f isFunctor UX = isf where isf : IsFunctor Cart Grph (λ z → (uobj z)) umap IsFunctor.identity isf {a} {b} {f} = begin umap (id1 Cart a) ≈⟨⟩ umap {a} {a} (record { cmap = identityFunctor ; ccf = λ x → x }) ≈⟨⟩ record { vmap = λ y → y ; emap = λ f → f } ≈⟨⟩ id1 Grph ((uobj a)) ∎ where open ≈-Reasoning Grph IsFunctor.distr isf {a} {b} {c} {f} {g} = begin umap ( Cart [ g o f ] ) -- FMap (cmap g) (FMap (cmap f) x) = FMap (cmap g) (FMap (cmap f) x) ≈⟨ (λ x → mrefl refl ) ⟩ Grph [ umap g o umap f ] ∎ where open ≈-Reasoning Grph -- FMap (cmap f) e emap (umap f) e = emap (umap g) e <- Cart [ f ≈ g ] IsFunctor.≈-cong isf {a} {b} {f} {g} f=g e with f=g e | ≃→a=a (cat b) (FMap (cmap f) e) (FMap (cmap g) e) (f=g e) | ≃→b=b (cat b) (FMap (cmap f) e) (FMap (cmap g) e) (f=g e) ... | eq | eqa | eqb = cc11 (FMap (cmap f) e) (FMap (cmap g) e) eq eqa eqb where cc11 : {a c a' c' : Obj (cat b) } → ( f : Hom (cat b) a c ) → ( g : Hom (cat b) a' c' ) → [ cat b ] f ~ g → a ≡ a' → c ≡ c' → [ uobj b ] f == g cc11 f g (refl eqv) refl refl = mrefl (≡←≈ b eqv) UC : Functor (CAT {c₁} {c₁} {c₁}) (Grph {c₁} {c₁}) FObj UC a = record { vertex = Obj a ; edge = Hom a } FMap UC {a} {b} f = record { vmap = λ e → FObj f e ; emap = λ e → FMap f e } isFunctor UC = isf where isf : IsFunctor CAT Grph (λ z → {!!}) {!!} IsFunctor.identity isf {a} {b} {f} = {!!} IsFunctor.distr isf {a} {b} {c} {f} {g} = {!!} IsFunctor.≈-cong isf {a} {b} {f} {g} f=g e = {!!} cat-graph-univ : {c₁ : Level} → UniversalMapping (Grph {c₁} {c₁}) (CAT {c₁ } {c₁} {c₁}) forgetful.UC cat-graph-univ {c₁} = record { F = F ; η = {!!} ; _* = {!!} ; isUniversalMapping = record { universalMapping = {!!} ; uniquness = {!!} } } where F : Obj (Grph {c₁} {c₁}) → Obj CAT F g = PL where open ccc-from-graph g open ccc-from-graph.Objs open ccc-from-graph.Arrow open ccc-from-graph.Arrows open graphtocat.Chain Sets0 : {c₂ : Level } → Category (suc c₂) c₂ c₂ Sets0 {c₂} = Sets {c₂} module fcat {c₁ c₂ : Level} ( g : Graph {c₁} {c₂} ) where open ccc-from-graph g FCat : Obj (Cart {c₁} {c₁ ⊔ c₂} {c₁ ⊔ c₂}) FCat = record { cat = record { Obj = Obj PL ; Hom = λ a b → Hom PL a b ; _o_ = Category._o_ PL ; _≈_ = λ {a} {b} f g → FMap CS f ≡ FMap CS g ; Id = λ {a} → id1 PL a ; isCategory = record { isEquivalence = {!!} ; identityL = λ {a b f} → {!!} ; identityR = λ {a b f} → {!!} ; o-resp-≈ = λ {a b c f g h i} → {!!} ; associative = λ {a} {b} {c} {f} {g} {h} → {!!} } } ; ≡←≈ = λ eq → {!!} ; ccc = {!!} } where B = Sets {c₁ ⊔ c₂} -- Hom FCat is an image of Fucntor CS, but I don't know how to write it postulate fcat-pl : {a b : Obj (cat FCat) } → Hom (cat FCat) a b → Hom PL a b fcat-eq : {a b : Obj (cat FCat) } → (f : Hom (cat FCat) a b ) → {!!} -- FMap CS (fcat-pl f) ≡ f ccc-graph-univ : {c₁ : Level} → UniversalMapping (Grph {c₁} {c₁}) (Cart {c₁ } {c₁} {c₁}) forgetful.UX ccc-graph-univ {c₁} = record { F = F ; η = η ; _* = solution ; isUniversalMapping = record { universalMapping = {!!} ; uniquness = {!!} } } where open forgetful open ccc-from-graph -- -- -- η : Hom Grph a (FObj UX (F a)) -- f : edge g x y -----------------------------------> (record {vertex = fobj (atom x) ; edge = fmap h }) : Graph -- Graph g x ----------------------> y : vertex g ↑ -- arrow f : Hom (PL g) (atom x) (atom y) | -- PL g atom x ------------------> atom y : Obj (PL g) | UX : Functor Sets Graph -- | | -- | Functor (CS g) | -- ↓ | -- Sets ((z : vertx g) → C z x) ----> ((z : vertx g) → C z y) = h : Hom Sets (fobj (atom x)) (fobj (atom y)) -- F : Obj (Grph {c₁} {c₁}) → Obj (Cart {c₁} {c₁} {c₁}) F g = FCat where open fcat g η : (a : Obj (Grph {c₁} {c₁}) ) → Hom Grph a (FObj UX (F a)) η a = record { vmap = λ y → vm y ; emap = λ f → em f } where fo : Graph {c₁ } {c₁} fo = uobj {c₁} (F a) vm : (y : vertex a ) → vertex (FObj UX (F a)) vm y = atom y em : { x y : vertex a } (f : edge a x y ) → edge (FObj UX (F a)) (vm x) (vm y) em {x} {y} f = iv (arrow f) (id _) -- fmap a (iv (arrow f) (id _)) cobj : {g : Obj (Grph {c₁} {c₁} ) } {c : Obj Cart} → Hom Grph g (FObj UX c) → Objs g → Obj (cat c) cobj {g} {c} f (atom x) = vmap f x cobj {g} {c} f ⊤ = CCC.1 (ccc c) cobj {g} {c} f (x ∧ y) = CCC._∧_ (ccc c) (cobj {g} {c} f x) (cobj {g} {c} f y) cobj {g} {c} f (b <= a) = CCC._<=_ (ccc c) (cobj {g} {c} f b) (cobj {g} {c} f a) c-map : {g : Obj (Grph )} {c : Obj Cart} {A B : Objs g} → (f : Hom Grph g (FObj UX c) ) → (fobj g A → fobj g B) → Hom (cat c) (cobj {g} {c} f A) (cobj {g} {c} f B) c-map {g} {c} {atom x} {atom b} f y = {!!} where cmpa1 : ((y₁ : vertex g) → C g y₁ x ) → {!!} cmpa1 = {!!} c-map {g} {c} {⊤} {atom b} f y with y ! b ... | id .b = {!!} ... | next x t = (cat c) [ emap f x o c-map f {!!} ] c-map {g} {c} {a ∧ a₁} {atom b} f y = {!!} c-map {g} {c} {a <= a₁} {atom b} f y = {!!} c-map {g} {c} {a} {⊤} f x = CCC.○ (ccc c) (cobj f a) c-map {g} {c} {a} {x ∧ y} f z = CCC.<_,_> (ccc c) (c-map f (λ k → proj₁ (z k))) (c-map f (λ k → proj₂ (z k))) c-map {g} {c} {d} {b <= a} f x = CCC._* (ccc c) ( c-map f (λ k → x (proj₁ k) (proj₂ k))) solution : {g : Obj Grph } {c : Obj Cart } → Hom Grph g (FObj UX c) → Hom Cart (F g) c solution {g} {c} f = record { cmap = record { FObj = λ x → cobj {g} {c} f x ; FMap = λ {x} {y} h → c-map {g} {c} {x} {y} f {!!} ; isFunctor = {!!} } ; ccf = {!!} }