Mercurial > hg > Members > kono > Proof > category
diff nat.agda @ 6:b1fd8d8689a9
add accessor
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 06 Jul 2013 16:28:26 +0900 |
parents | 16572013c362 |
children | 79d9c30e995a |
line wrap: on
line diff
--- a/nat.agda Sat Jul 06 14:56:23 2013 +0900 +++ b/nat.agda Sat Jul 06 16:28:26 2013 +0900 @@ -69,6 +69,10 @@ record Monad {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (T : Functor A A) (η : NNAT A A identityFunctor T) (μ : NNAT A A (T ○ T) T) : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where + eta : NNAT A A identityFunctor T + eta = η + mu : NNAT A A (T ○ T) T + mu = μ field isMonad : IsMonad A T η μ @@ -136,7 +140,7 @@ { M : Monad A T η μ } ( K : Kleisli A T η μ M) -> A [ join K b (NAT η b) f ≈ f ] -Lemma7 m = {!!} +Lemma7 k = {!!} Lemma8 : {c₁ c₂ ℓ : Level} {A : Category c₁ c₂ ℓ} { T : Functor A A } @@ -147,7 +151,7 @@ { M : Monad A T η μ } ( K : Kleisli A T η μ M) -> A [ join K b f (NAT η a) ≈ f ] -Lemma8 m = {!!} +Lemma8 k = ? Lemma9 : {c₁ c₂ ℓ : Level} {A : Category c₁ c₂ ℓ} { T : Functor A A } @@ -160,7 +164,7 @@ { M : Monad A T η μ } ( K : Kleisli A T η μ M) -> A [ join K d h (join K c g f) ≈ join K d ( join K d h g) f ] -Lemma9 m = {!!} +Lemma9 k = {!!}