annotate nat.agda @ 6:b1fd8d8689a9

add accessor
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sat, 06 Jul 2013 16:28:26 +0900
parents 16572013c362
children 79d9c30e995a
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
rev   line source
0
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1 module nat where
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
2
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
3 -- Monad
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
4 -- Category A
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
5 -- A = Category
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
6 -- Functor T : A -> A
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
7 --T(a) = t(a)
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
8 --T(f) = tf(f)
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
9
2
7ce421d5ee2b unity1 unity2
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1
diff changeset
10 open import Category -- https://github.com/konn/category-agda
0
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
11 open import Level
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
12 open Functor
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
13
1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 0
diff changeset
14 --T(g f) = T(g) T(f)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 0
diff changeset
15
0
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
16 Lemma1 : {c₁ c₂ l : Level} {A : Category c₁ c₂ l} (T : Functor A A) -> {a b c : Obj A} {g : Hom A b c} { f : Hom A a b }
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
17 -> A [ ( FMap T (A [ g o f ] )) ≈ (A [ FMap T g o FMap T f ]) ]
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
18 Lemma1 = \t -> IsFunctor.distr ( isFunctor t )
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
19
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
20 -- F(f)
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
21 -- F(a) ----> F(b)
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
22 -- | |
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
23 -- |t(a) |t(b) G(f)t(a) = t(b)F(f)
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
24 -- | |
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
25 -- v v
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
26 -- G(a) ----> G(b)
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
27 -- G(f)
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
28
5
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
29 record IsNNAT {c₁ c₂ ℓ c₁′ c₂′ ℓ′ : Level} (D : Category c₁ c₂ ℓ) (C : Category c₁′ c₂′ ℓ′)
0
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
30 ( F G : Functor D C )
5
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
31 (NAT : (A : Obj D) → Hom C (FObj F A) (FObj G A))
0
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
32 : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁′ ⊔ c₂′ ⊔ ℓ′)) where
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
33 field
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
34 naturality : {a b : Obj D} {f : Hom D a b}
5
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
35 → C [ C [ ( FMap G f ) o ( NAT a ) ] ≈ C [ (NAT b ) o (FMap F f) ] ]
0
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
36 -- uniqness : {d : Obj D}
5
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
37 -- → C [ NAT d ≈ NAT d ]
0
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
38
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
39
5
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
40 record NNAT {c₁ c₂ ℓ c₁′ c₂′ ℓ′ : Level} (domain : Category c₁ c₂ ℓ) (codomain : Category c₁′ c₂′ ℓ′) (F G : Functor domain codomain )
0
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
41 : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁′ ⊔ c₂′ ⊔ ℓ′)) where
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
42 field
5
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
43 NAT : (A : Obj domain) → Hom codomain (FObj F A) (FObj G A)
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
44 isNNAT : IsNNAT domain codomain F G NAT
0
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
45
5
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
46 open NNAT
1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 0
diff changeset
47 Lemma2 : {c₁ c₂ l : Level} {A : Category c₁ c₂ l} {F G : Functor A A}
5
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
48 -> (μ : NNAT A A F G) -> {a b : Obj A} { f : Hom A a b }
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
49 -> A [ A [ FMap G f o NAT μ a ] ≈ A [ NAT μ b o FMap F f ] ]
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
50 Lemma2 = \n -> IsNNAT.naturality ( isNNAT n )
0
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
51
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
52 open import Category.Cat
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
53
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
54 -- η : 1_A -> T
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
55 -- μ : TT -> T
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
56 -- μ(a)η(T(a)) = a
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
57 -- μ(a)T(η(a)) = a
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
58 -- μ(a)(μ(T(a))) = μ(a)T(μ(a))
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
59
1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 0
diff changeset
60 record IsMonad {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 0
diff changeset
61 ( T : Functor A A )
5
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
62 ( η : NNAT A A identityFunctor T )
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
63 ( μ : NNAT A A (T ○ T) T)
1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 0
diff changeset
64 : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 0
diff changeset
65 field
5
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
66 assoc : {a : Obj A} -> A [ A [ NAT μ a o NAT μ ( FObj T a ) ] ≈ A [ NAT μ a o FMap T (NAT μ a) ] ]
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
67 unity1 : {a : Obj A} -> A [ A [ NAT μ a o NAT η ( FObj T a ) ] ≈ Id {_} {_} {_} {A} (FObj T a) ]
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
68 unity2 : {a : Obj A} -> A [ A [ NAT μ a o (FMap T (NAT η a ))] ≈ Id {_} {_} {_} {A} (FObj T a) ]
0
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
69
5
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
70 record Monad {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (T : Functor A A) (η : NNAT A A identityFunctor T) (μ : NNAT A A (T ○ T) T)
1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 0
diff changeset
71 : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where
6
b1fd8d8689a9 add accessor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 5
diff changeset
72 eta : NNAT A A identityFunctor T
b1fd8d8689a9 add accessor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 5
diff changeset
73 eta = η
b1fd8d8689a9 add accessor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 5
diff changeset
74 mu : NNAT A A (T ○ T) T
b1fd8d8689a9 add accessor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 5
diff changeset
75 mu = μ
1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 0
diff changeset
76 field
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 0
diff changeset
77 isMonad : IsMonad A T η μ
0
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
78
2
7ce421d5ee2b unity1 unity2
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1
diff changeset
79 open Monad
7ce421d5ee2b unity1 unity2
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1
diff changeset
80 Lemma3 : {c₁ c₂ ℓ : Level} {A : Category c₁ c₂ ℓ}
7ce421d5ee2b unity1 unity2
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1
diff changeset
81 { T : Functor A A }
5
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
82 { η : NNAT A A identityFunctor T }
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
83 { μ : NNAT A A (T ○ T) T }
2
7ce421d5ee2b unity1 unity2
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1
diff changeset
84 { a : Obj A } ->
7ce421d5ee2b unity1 unity2
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1
diff changeset
85 ( M : Monad A T η μ )
5
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
86 -> A [ A [ NAT μ a o NAT μ ( FObj T a ) ] ≈ A [ NAT μ a o FMap T (NAT μ a) ] ]
2
7ce421d5ee2b unity1 unity2
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1
diff changeset
87 Lemma3 = \m -> IsMonad.assoc ( isMonad m )
7ce421d5ee2b unity1 unity2
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1
diff changeset
88
7ce421d5ee2b unity1 unity2
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1
diff changeset
89
7ce421d5ee2b unity1 unity2
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1
diff changeset
90 Lemma4 : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) {a b : Obj A } { f : Hom A a b}
7ce421d5ee2b unity1 unity2
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1
diff changeset
91 -> A [ A [ Id {_} {_} {_} {A} b o f ] ≈ f ]
7ce421d5ee2b unity1 unity2
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1
diff changeset
92 Lemma4 = \a -> IsCategory.identityL ( Category.isCategory a )
0
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
93
3
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
94 Lemma5 : {c₁ c₂ ℓ : Level} {A : Category c₁ c₂ ℓ}
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
95 { T : Functor A A }
5
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
96 { η : NNAT A A identityFunctor T }
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
97 { μ : NNAT A A (T ○ T) T }
3
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
98 { a : Obj A } ->
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
99 ( M : Monad A T η μ )
5
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
100 -> A [ A [ NAT μ a o NAT η ( FObj T a ) ] ≈ Id {_} {_} {_} {A} (FObj T a) ]
3
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
101 Lemma5 = \m -> IsMonad.unity1 ( isMonad m )
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
102
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
103 Lemma6 : {c₁ c₂ ℓ : Level} {A : Category c₁ c₂ ℓ}
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
104 { T : Functor A A }
5
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
105 { η : NNAT A A identityFunctor T }
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
106 { μ : NNAT A A (T ○ T) T }
3
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
107 { a : Obj A } ->
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
108 ( M : Monad A T η μ )
5
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
109 -> A [ A [ NAT μ a o (FMap T (NAT η a )) ] ≈ Id {_} {_} {_} {A} (FObj T a) ]
3
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
110 Lemma6 = \m -> IsMonad.unity2 ( isMonad m )
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
111
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
112 -- T = M x A
0
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
113 -- nat of η
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
114 -- g ○ f = μ(c) T(g) f
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
115 -- h ○ (g ○ f) = (h ○ g) ○ f
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
116 -- η(b) ○ f = f
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
117 -- f ○ η(a) = f
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
118
4
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 3
diff changeset
119 record Kleisli { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 3
diff changeset
120 ( T : Functor A A )
5
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
121 ( η : NNAT A A identityFunctor T )
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
122 ( μ : NNAT A A (T ○ T) T )
4
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 3
diff changeset
123 ( M : Monad A T η μ ) : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where
5
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
124 monad : Monad A T η μ
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
125 monad = M
4
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 3
diff changeset
126 join : { a b : Obj A } -> ( c : Obj A ) ->
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 3
diff changeset
127 ( Hom A b ( FObj T c )) -> ( Hom A a ( FObj T b)) -> Hom A a ( FObj T c )
5
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
128 join c g f = A [ NAT μ c o A [ FMap T g o f ] ]
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
129
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
130 open import Relation.Binary
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
131 open import Relation.Binary.Core
4
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 3
diff changeset
132
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 3
diff changeset
133 open Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 3
diff changeset
134 Lemma7 : {c₁ c₂ ℓ : Level} {A : Category c₁ c₂ ℓ}
3
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
135 { T : Functor A A }
5
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
136 { η : NNAT A A identityFunctor T }
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
137 { μ : NNAT A A (T ○ T) T }
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
138 { a b : Obj A }
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
139 { f : Hom A a ( FObj T b) }
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
140 { M : Monad A T η μ }
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
141 ( K : Kleisli A T η μ M)
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
142 -> A [ join K b (NAT η b) f ≈ f ]
6
b1fd8d8689a9 add accessor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 5
diff changeset
143 Lemma7 k = {!!}
5
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
144
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
145 Lemma8 : {c₁ c₂ ℓ : Level} {A : Category c₁ c₂ ℓ}
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
146 { T : Functor A A }
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
147 { η : NNAT A A identityFunctor T }
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
148 { μ : NNAT A A (T ○ T) T }
4
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 3
diff changeset
149 { a b : Obj A }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 3
diff changeset
150 { f : Hom A a ( FObj T b) }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 3
diff changeset
151 { M : Monad A T η μ }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 3
diff changeset
152 ( K : Kleisli A T η μ M)
5
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
153 -> A [ join K b f (NAT η a) ≈ f ]
6
b1fd8d8689a9 add accessor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 5
diff changeset
154 Lemma8 k = ?
5
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
155
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
156 Lemma9 : {c₁ c₂ ℓ : Level} {A : Category c₁ c₂ ℓ}
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
157 { T : Functor A A }
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
158 { η : NNAT A A identityFunctor T }
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
159 { μ : NNAT A A (T ○ T) T }
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
160 { a b c d : Obj A }
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
161 { f : Hom A a ( FObj T b) }
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
162 { g : Hom A b ( FObj T c) }
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
163 { h : Hom A c ( FObj T d) }
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
164 { M : Monad A T η μ }
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
165 ( K : Kleisli A T η μ M)
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
166 -> A [ join K d h (join K c g f) ≈ join K d ( join K d h g) f ]
6
b1fd8d8689a9 add accessor
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 5
diff changeset
167 Lemma9 k = {!!}
5
16572013c362 Kleisli Proposition
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 4
diff changeset
168
4
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 3
diff changeset
169
3
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
170
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
171
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
172
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
173 -- Kleisli :
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
174 -- Kleisli = record { Hom =
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
175 -- ; Hom = _⟶_
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
176 -- ; Id = IdProd
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
177 -- ; _o_ = _∘_
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
178 -- ; _≈_ = _≈_
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
179 -- ; isCategory = record { isEquivalence = record { refl = λ {φ} → ≈-refl {φ = φ}
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
180 -- ; sym = λ {φ ψ} → ≈-symm {φ = φ} {ψ}
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
181 -- ; trans = λ {φ ψ σ} → ≈-trans {φ = φ} {ψ} {σ}
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
182 -- }
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
183 -- ; identityL = identityL
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
184 -- ; identityR = identityR
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
185 -- ; o-resp-≈ = o-resp-≈
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
186 -- ; associative = associative
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
187 -- }
dce706edd66b Kleisli
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 2
diff changeset
188 -- }