Mercurial > hg > Members > kono > Proof > category
diff nat.agda @ 3:dce706edd66b
Kleisli
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 06 Jul 2013 07:27:57 +0900 |
parents | 7ce421d5ee2b |
children | 05087d3aeac0 |
line wrap: on
line diff
--- a/nat.agda Sat Jul 06 03:30:31 2013 +0900 +++ b/nat.agda Sat Jul 06 07:27:57 2013 +0900 @@ -33,9 +33,8 @@ field naturality : {a b : Obj D} {f : Hom D a b} → C [ C [ ( FMap G f ) o ( Trans a ) ] ≈ C [ (Trans b ) o (FMap F f) ] ] --- how to write uniquness? -- uniqness : {d : Obj D} --- → ∃{e : Trans d} -> ∀{a : Trans d} → C [ e ≈ a ] +-- → C [ Trans d ≈ Trans d ] record NTrans {c₁ c₂ ℓ c₁′ c₂′ ℓ′ : Level} (domain : Category c₁ c₂ ℓ) (codomain : Category c₁′ c₂′ ℓ′) (F G : Functor domain codomain ) @@ -64,9 +63,9 @@ ( μ : NTrans A A (T ○ T) T) : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where field - assoc : {a : Obj A} -> A [ A [ Trans μ a o Trans μ ( FObj T a ) ] ≈ A [ Trans μ a o FMap T (Trans μ a) ] ] - unity1 : {a : Obj A} -> A [ A [ Trans μ a o Trans η ( FObj T a ) ] ≈ Id {_} {_} {_} {A} (FObj T a) ] - unity2 : {a : Obj A} -> A [ A [ Trans μ a o (FMap T (Trans η a )) ] ≈ Id {_} {_} {_} {A} (FObj T a) ] + assoc : {a : Obj A} -> A [ A [ Trans μ a o Trans μ ( FObj T a ) ] ≈ A [ Trans μ a o FMap T (Trans μ a) ] ] + unity1 : {a : Obj A} -> A [ A [ Trans μ a o Trans η ( FObj T a ) ] ≈ Id {_} {_} {_} {A} (FObj T a) ] + unity2 : {a : Obj A} -> A [ A [ Trans μ a o (FMap T (Trans η a ))] ≈ Id {_} {_} {_} {A} (FObj T a) ] record Monad {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (T : Functor A A) (η : NTrans A A identityFunctor T) (μ : NTrans A A (T ○ T) T) : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where @@ -88,14 +87,81 @@ -> A [ A [ Id {_} {_} {_} {A} b o f ] ≈ f ] Lemma4 = \a -> IsCategory.identityL ( Category.isCategory a ) +Lemma5 : {c₁ c₂ ℓ : Level} {A : Category c₁ c₂ ℓ} + { T : Functor A A } + { η : NTrans A A identityFunctor T } + { μ : NTrans A A (T ○ T) T } + { a : Obj A } -> + ( M : Monad A T η μ ) + -> A [ A [ Trans μ a o Trans η ( FObj T a ) ] ≈ Id {_} {_} {_} {A} (FObj T a) ] +Lemma5 = \m -> IsMonad.unity1 ( isMonad m ) + +Lemma6 : {c₁ c₂ ℓ : Level} {A : Category c₁ c₂ ℓ} + { T : Functor A A } + { η : NTrans A A identityFunctor T } + { μ : NTrans A A (T ○ T) T } + { a : Obj A } -> + ( M : Monad A T η μ ) + -> A [ A [ Trans μ a o (FMap T (Trans η a )) ] ≈ Id {_} {_} {_} {A} (FObj T a) ] +Lemma6 = \m -> IsMonad.unity2 ( isMonad m ) + +-- T = M x A + +-- open import Data.Product -- renaming (_×_ to _*_) + +-- MonoidalMonad : +-- MonoidalMonad = record { Obj = M × A +-- ; Hom = _⟶_ +-- ; Id = IdProd +-- ; _o_ = _∘_ +-- ; _≈_ = _≈_ +-- ; isCategory = record { isEquivalence = record { refl = λ {φ} → ≈-refl {φ = φ} +-- ; sym = λ {φ ψ} → ≈-symm {φ = φ} {ψ} +-- ; trans = λ {φ ψ σ} → ≈-trans {φ = φ} {ψ} {σ} +-- } +-- ; identityL = identityL +-- ; identityR = identityR +-- ; o-resp-≈ = o-resp-≈ +-- ; associative = associative +-- } +-- } + + -- nat of η -- g ○ f = μ(c) T(g) f - -- h ○ (g ○ f) = (h ○ g) ○ f -- η(b) ○ f = f -- f ○ η(a) = f +record Kleisli { c₁ c₂ ℓ : Level} { A : Category c₁ c₂ ℓ } + { T : Functor A A } + { η : NTrans A A identityFunctor T } + { μ : NTrans A A (T ○ T) T } + { M : Monad A T η μ } : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where + infix 9 _*_ + _*_ : { a b c : Obj A } -> + ( Hom A b ( FObj T c )) -> ( Hom A a ( FObj T b)) -> Hom A a ( FObj T c ) + g * f = A [ Trans μ ({!!} (Category.cod A g)) o A [ FMap T g o f ] ] + + + +-- Kleisli : +-- Kleisli = record { Hom = +-- ; Hom = _⟶_ +-- ; Id = IdProd +-- ; _o_ = _∘_ +-- ; _≈_ = _≈_ +-- ; isCategory = record { isEquivalence = record { refl = λ {φ} → ≈-refl {φ = φ} +-- ; sym = λ {φ ψ} → ≈-symm {φ = φ} {ψ} +-- ; trans = λ {φ ψ σ} → ≈-trans {φ = φ} {ψ} {σ} +-- } +-- ; identityL = identityL +-- ; identityR = identityR +-- ; o-resp-≈ = o-resp-≈ +-- ; associative = associative +-- } +-- }