Mercurial > hg > Members > kono > Proof > category
view nat.agda @ 2:7ce421d5ee2b
unity1 unity2
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 06 Jul 2013 03:30:31 +0900 |
parents | 73b780d13f60 |
children | dce706edd66b |
line wrap: on
line source
module nat where -- Monad -- Category A -- A = Category -- Functor T : A -> A --T(a) = t(a) --T(f) = tf(f) open import Category -- https://github.com/konn/category-agda open import Level open Functor --T(g f) = T(g) T(f) Lemma1 : {c₁ c₂ l : Level} {A : Category c₁ c₂ l} (T : Functor A A) -> {a b c : Obj A} {g : Hom A b c} { f : Hom A a b } -> A [ ( FMap T (A [ g o f ] )) ≈ (A [ FMap T g o FMap T f ]) ] Lemma1 = \t -> IsFunctor.distr ( isFunctor t ) -- F(f) -- F(a) ----> F(b) -- | | -- |t(a) |t(b) G(f)t(a) = t(b)F(f) -- | | -- v v -- G(a) ----> G(b) -- G(f) record IsNTrans {c₁ c₂ ℓ c₁′ c₂′ ℓ′ : Level} (D : Category c₁ c₂ ℓ) (C : Category c₁′ c₂′ ℓ′) ( F G : Functor D C ) (Trans : (A : Obj D) → Hom C (FObj F A) (FObj G A)) : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁′ ⊔ c₂′ ⊔ ℓ′)) where field naturality : {a b : Obj D} {f : Hom D a b} → C [ C [ ( FMap G f ) o ( Trans a ) ] ≈ C [ (Trans b ) o (FMap F f) ] ] -- how to write uniquness? -- uniqness : {d : Obj D} -- → ∃{e : Trans d} -> ∀{a : Trans d} → C [ e ≈ a ] record NTrans {c₁ c₂ ℓ c₁′ c₂′ ℓ′ : Level} (domain : Category c₁ c₂ ℓ) (codomain : Category c₁′ c₂′ ℓ′) (F G : Functor domain codomain ) : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁′ ⊔ c₂′ ⊔ ℓ′)) where field Trans : (A : Obj domain) → Hom codomain (FObj F A) (FObj G A) isNTrans : IsNTrans domain codomain F G Trans open NTrans Lemma2 : {c₁ c₂ l : Level} {A : Category c₁ c₂ l} {F G : Functor A A} -> (μ : NTrans A A F G) -> {a b : Obj A} { f : Hom A a b } -> A [ A [ FMap G f o Trans μ a ] ≈ A [ Trans μ b o FMap F f ] ] Lemma2 = \n -> IsNTrans.naturality ( isNTrans n ) open import Category.Cat -- η : 1_A -> T -- μ : TT -> T -- μ(a)η(T(a)) = a -- μ(a)T(η(a)) = a -- μ(a)(μ(T(a))) = μ(a)T(μ(a)) record IsMonad {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) ( T : Functor A A ) ( η : NTrans A A identityFunctor T ) ( μ : NTrans A A (T ○ T) T) : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where field assoc : {a : Obj A} -> A [ A [ Trans μ a o Trans μ ( FObj T a ) ] ≈ A [ Trans μ a o FMap T (Trans μ a) ] ] unity1 : {a : Obj A} -> A [ A [ Trans μ a o Trans η ( FObj T a ) ] ≈ Id {_} {_} {_} {A} (FObj T a) ] unity2 : {a : Obj A} -> A [ A [ Trans μ a o (FMap T (Trans η a )) ] ≈ Id {_} {_} {_} {A} (FObj T a) ] record Monad {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (T : Functor A A) (η : NTrans A A identityFunctor T) (μ : NTrans A A (T ○ T) T) : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where field isMonad : IsMonad A T η μ open Monad Lemma3 : {c₁ c₂ ℓ : Level} {A : Category c₁ c₂ ℓ} { T : Functor A A } { η : NTrans A A identityFunctor T } { μ : NTrans A A (T ○ T) T } { a : Obj A } -> ( M : Monad A T η μ ) -> A [ A [ Trans μ a o Trans μ ( FObj T a ) ] ≈ A [ Trans μ a o FMap T (Trans μ a) ] ] Lemma3 = \m -> IsMonad.assoc ( isMonad m ) Lemma4 : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) {a b : Obj A } { f : Hom A a b} -> A [ A [ Id {_} {_} {_} {A} b o f ] ≈ f ] Lemma4 = \a -> IsCategory.identityL ( Category.isCategory a ) -- nat of η -- g ○ f = μ(c) T(g) f -- h ○ (g ○ f) = (h ○ g) ○ f -- η(b) ○ f = f -- f ○ η(a) = f