annotate nat.agda @ 2:7ce421d5ee2b

unity1 unity2
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sat, 06 Jul 2013 03:30:31 +0900
parents 73b780d13f60
children dce706edd66b
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
rev   line source
0
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1 module nat where
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
2
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
3 -- Monad
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
4 -- Category A
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
5 -- A = Category
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
6 -- Functor T : A -> A
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
7 --T(a) = t(a)
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
8 --T(f) = tf(f)
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
9
2
7ce421d5ee2b unity1 unity2
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1
diff changeset
10 open import Category -- https://github.com/konn/category-agda
0
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
11 open import Level
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
12 open Functor
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
13
1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 0
diff changeset
14 --T(g f) = T(g) T(f)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 0
diff changeset
15
0
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
16 Lemma1 : {c₁ c₂ l : Level} {A : Category c₁ c₂ l} (T : Functor A A) -> {a b c : Obj A} {g : Hom A b c} { f : Hom A a b }
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
17 -> A [ ( FMap T (A [ g o f ] )) ≈ (A [ FMap T g o FMap T f ]) ]
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
18 Lemma1 = \t -> IsFunctor.distr ( isFunctor t )
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
19
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
20 -- F(f)
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
21 -- F(a) ----> F(b)
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
22 -- | |
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
23 -- |t(a) |t(b) G(f)t(a) = t(b)F(f)
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
24 -- | |
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
25 -- v v
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
26 -- G(a) ----> G(b)
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
27 -- G(f)
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
28
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
29 record IsNTrans {c₁ c₂ ℓ c₁′ c₂′ ℓ′ : Level} (D : Category c₁ c₂ ℓ) (C : Category c₁′ c₂′ ℓ′)
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
30 ( F G : Functor D C )
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
31 (Trans : (A : Obj D) → Hom C (FObj F A) (FObj G A))
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
32 : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁′ ⊔ c₂′ ⊔ ℓ′)) where
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
33 field
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
34 naturality : {a b : Obj D} {f : Hom D a b}
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
35 → C [ C [ ( FMap G f ) o ( Trans a ) ] ≈ C [ (Trans b ) o (FMap F f) ] ]
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
36 -- how to write uniquness?
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
37 -- uniqness : {d : Obj D}
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
38 -- → ∃{e : Trans d} -> ∀{a : Trans d} → C [ e ≈ a ]
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
39
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
40
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
41 record NTrans {c₁ c₂ ℓ c₁′ c₂′ ℓ′ : Level} (domain : Category c₁ c₂ ℓ) (codomain : Category c₁′ c₂′ ℓ′) (F G : Functor domain codomain )
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
42 : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁′ ⊔ c₂′ ⊔ ℓ′)) where
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
43 field
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
44 Trans : (A : Obj domain) → Hom codomain (FObj F A) (FObj G A)
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
45 isNTrans : IsNTrans domain codomain F G Trans
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
46
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
47 open NTrans
1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 0
diff changeset
48 Lemma2 : {c₁ c₂ l : Level} {A : Category c₁ c₂ l} {F G : Functor A A}
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 0
diff changeset
49 -> (μ : NTrans A A F G) -> {a b : Obj A} { f : Hom A a b }
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 0
diff changeset
50 -> A [ A [ FMap G f o Trans μ a ] ≈ A [ Trans μ b o FMap F f ] ]
0
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
51 Lemma2 = \n -> IsNTrans.naturality ( isNTrans n )
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
52
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
53 open import Category.Cat
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
54
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
55 -- η : 1_A -> T
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
56 -- μ : TT -> T
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
57 -- μ(a)η(T(a)) = a
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
58 -- μ(a)T(η(a)) = a
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
59 -- μ(a)(μ(T(a))) = μ(a)T(μ(a))
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
60
1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 0
diff changeset
61 record IsMonad {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 0
diff changeset
62 ( T : Functor A A )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 0
diff changeset
63 ( η : NTrans A A identityFunctor T )
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 0
diff changeset
64 ( μ : NTrans A A (T ○ T) T)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 0
diff changeset
65 : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 0
diff changeset
66 field
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 0
diff changeset
67 assoc : {a : Obj A} -> A [ A [ Trans μ a o Trans μ ( FObj T a ) ] ≈ A [ Trans μ a o FMap T (Trans μ a) ] ]
2
7ce421d5ee2b unity1 unity2
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1
diff changeset
68 unity1 : {a : Obj A} -> A [ A [ Trans μ a o Trans η ( FObj T a ) ] ≈ Id {_} {_} {_} {A} (FObj T a) ]
7ce421d5ee2b unity1 unity2
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1
diff changeset
69 unity2 : {a : Obj A} -> A [ A [ Trans μ a o (FMap T (Trans η a )) ] ≈ Id {_} {_} {_} {A} (FObj T a) ]
0
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
70
1
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 0
diff changeset
71 record Monad {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (T : Functor A A) (η : NTrans A A identityFunctor T) (μ : NTrans A A (T ○ T) T)
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 0
diff changeset
72 : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 0
diff changeset
73 field
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 0
diff changeset
74 isMonad : IsMonad A T η μ
0
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
75
2
7ce421d5ee2b unity1 unity2
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1
diff changeset
76 open Monad
7ce421d5ee2b unity1 unity2
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1
diff changeset
77 Lemma3 : {c₁ c₂ ℓ : Level} {A : Category c₁ c₂ ℓ}
7ce421d5ee2b unity1 unity2
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1
diff changeset
78 { T : Functor A A }
7ce421d5ee2b unity1 unity2
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1
diff changeset
79 { η : NTrans A A identityFunctor T }
7ce421d5ee2b unity1 unity2
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1
diff changeset
80 { μ : NTrans A A (T ○ T) T }
7ce421d5ee2b unity1 unity2
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1
diff changeset
81 { a : Obj A } ->
7ce421d5ee2b unity1 unity2
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1
diff changeset
82 ( M : Monad A T η μ )
7ce421d5ee2b unity1 unity2
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1
diff changeset
83 -> A [ A [ Trans μ a o Trans μ ( FObj T a ) ] ≈ A [ Trans μ a o FMap T (Trans μ a) ] ]
7ce421d5ee2b unity1 unity2
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1
diff changeset
84 Lemma3 = \m -> IsMonad.assoc ( isMonad m )
7ce421d5ee2b unity1 unity2
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1
diff changeset
85
7ce421d5ee2b unity1 unity2
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1
diff changeset
86
7ce421d5ee2b unity1 unity2
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1
diff changeset
87 Lemma4 : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) {a b : Obj A } { f : Hom A a b}
7ce421d5ee2b unity1 unity2
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1
diff changeset
88 -> A [ A [ Id {_} {_} {_} {A} b o f ] ≈ f ]
7ce421d5ee2b unity1 unity2
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 1
diff changeset
89 Lemma4 = \a -> IsCategory.identityL ( Category.isCategory a )
0
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
90
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
91 -- nat of η
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
92
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
93
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
94 -- g ○ f = μ(c) T(g) f
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
95
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
96 -- h ○ (g ○ f) = (h ○ g) ○ f
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
97
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
98 -- η(b) ○ f = f
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
99 -- f ○ η(a) = f
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
100
302941542c0f category agda
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
101