Mercurial > hg > Members > kono > Proof > category
comparison nat.agda @ 3:dce706edd66b
Kleisli
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 06 Jul 2013 07:27:57 +0900 |
parents | 7ce421d5ee2b |
children | 05087d3aeac0 |
comparison
equal
deleted
inserted
replaced
2:7ce421d5ee2b | 3:dce706edd66b |
---|---|
31 (Trans : (A : Obj D) → Hom C (FObj F A) (FObj G A)) | 31 (Trans : (A : Obj D) → Hom C (FObj F A) (FObj G A)) |
32 : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁′ ⊔ c₂′ ⊔ ℓ′)) where | 32 : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁′ ⊔ c₂′ ⊔ ℓ′)) where |
33 field | 33 field |
34 naturality : {a b : Obj D} {f : Hom D a b} | 34 naturality : {a b : Obj D} {f : Hom D a b} |
35 → C [ C [ ( FMap G f ) o ( Trans a ) ] ≈ C [ (Trans b ) o (FMap F f) ] ] | 35 → C [ C [ ( FMap G f ) o ( Trans a ) ] ≈ C [ (Trans b ) o (FMap F f) ] ] |
36 -- how to write uniquness? | |
37 -- uniqness : {d : Obj D} | 36 -- uniqness : {d : Obj D} |
38 -- → ∃{e : Trans d} -> ∀{a : Trans d} → C [ e ≈ a ] | 37 -- → C [ Trans d ≈ Trans d ] |
39 | 38 |
40 | 39 |
41 record NTrans {c₁ c₂ ℓ c₁′ c₂′ ℓ′ : Level} (domain : Category c₁ c₂ ℓ) (codomain : Category c₁′ c₂′ ℓ′) (F G : Functor domain codomain ) | 40 record NTrans {c₁ c₂ ℓ c₁′ c₂′ ℓ′ : Level} (domain : Category c₁ c₂ ℓ) (codomain : Category c₁′ c₂′ ℓ′) (F G : Functor domain codomain ) |
42 : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁′ ⊔ c₂′ ⊔ ℓ′)) where | 41 : Set (suc (c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁′ ⊔ c₂′ ⊔ ℓ′)) where |
43 field | 42 field |
62 ( T : Functor A A ) | 61 ( T : Functor A A ) |
63 ( η : NTrans A A identityFunctor T ) | 62 ( η : NTrans A A identityFunctor T ) |
64 ( μ : NTrans A A (T ○ T) T) | 63 ( μ : NTrans A A (T ○ T) T) |
65 : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where | 64 : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where |
66 field | 65 field |
67 assoc : {a : Obj A} -> A [ A [ Trans μ a o Trans μ ( FObj T a ) ] ≈ A [ Trans μ a o FMap T (Trans μ a) ] ] | 66 assoc : {a : Obj A} -> A [ A [ Trans μ a o Trans μ ( FObj T a ) ] ≈ A [ Trans μ a o FMap T (Trans μ a) ] ] |
68 unity1 : {a : Obj A} -> A [ A [ Trans μ a o Trans η ( FObj T a ) ] ≈ Id {_} {_} {_} {A} (FObj T a) ] | 67 unity1 : {a : Obj A} -> A [ A [ Trans μ a o Trans η ( FObj T a ) ] ≈ Id {_} {_} {_} {A} (FObj T a) ] |
69 unity2 : {a : Obj A} -> A [ A [ Trans μ a o (FMap T (Trans η a )) ] ≈ Id {_} {_} {_} {A} (FObj T a) ] | 68 unity2 : {a : Obj A} -> A [ A [ Trans μ a o (FMap T (Trans η a ))] ≈ Id {_} {_} {_} {A} (FObj T a) ] |
70 | 69 |
71 record Monad {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (T : Functor A A) (η : NTrans A A identityFunctor T) (μ : NTrans A A (T ○ T) T) | 70 record Monad {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (T : Functor A A) (η : NTrans A A identityFunctor T) (μ : NTrans A A (T ○ T) T) |
72 : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where | 71 : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where |
73 field | 72 field |
74 isMonad : IsMonad A T η μ | 73 isMonad : IsMonad A T η μ |
86 | 85 |
87 Lemma4 : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) {a b : Obj A } { f : Hom A a b} | 86 Lemma4 : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) {a b : Obj A } { f : Hom A a b} |
88 -> A [ A [ Id {_} {_} {_} {A} b o f ] ≈ f ] | 87 -> A [ A [ Id {_} {_} {_} {A} b o f ] ≈ f ] |
89 Lemma4 = \a -> IsCategory.identityL ( Category.isCategory a ) | 88 Lemma4 = \a -> IsCategory.identityL ( Category.isCategory a ) |
90 | 89 |
90 Lemma5 : {c₁ c₂ ℓ : Level} {A : Category c₁ c₂ ℓ} | |
91 { T : Functor A A } | |
92 { η : NTrans A A identityFunctor T } | |
93 { μ : NTrans A A (T ○ T) T } | |
94 { a : Obj A } -> | |
95 ( M : Monad A T η μ ) | |
96 -> A [ A [ Trans μ a o Trans η ( FObj T a ) ] ≈ Id {_} {_} {_} {A} (FObj T a) ] | |
97 Lemma5 = \m -> IsMonad.unity1 ( isMonad m ) | |
98 | |
99 Lemma6 : {c₁ c₂ ℓ : Level} {A : Category c₁ c₂ ℓ} | |
100 { T : Functor A A } | |
101 { η : NTrans A A identityFunctor T } | |
102 { μ : NTrans A A (T ○ T) T } | |
103 { a : Obj A } -> | |
104 ( M : Monad A T η μ ) | |
105 -> A [ A [ Trans μ a o (FMap T (Trans η a )) ] ≈ Id {_} {_} {_} {A} (FObj T a) ] | |
106 Lemma6 = \m -> IsMonad.unity2 ( isMonad m ) | |
107 | |
108 -- T = M x A | |
109 | |
110 -- open import Data.Product -- renaming (_×_ to _*_) | |
111 | |
112 -- MonoidalMonad : | |
113 -- MonoidalMonad = record { Obj = M × A | |
114 -- ; Hom = _⟶_ | |
115 -- ; Id = IdProd | |
116 -- ; _o_ = _∘_ | |
117 -- ; _≈_ = _≈_ | |
118 -- ; isCategory = record { isEquivalence = record { refl = λ {φ} → ≈-refl {φ = φ} | |
119 -- ; sym = λ {φ ψ} → ≈-symm {φ = φ} {ψ} | |
120 -- ; trans = λ {φ ψ σ} → ≈-trans {φ = φ} {ψ} {σ} | |
121 -- } | |
122 -- ; identityL = identityL | |
123 -- ; identityR = identityR | |
124 -- ; o-resp-≈ = o-resp-≈ | |
125 -- ; associative = associative | |
126 -- } | |
127 -- } | |
128 | |
129 | |
91 -- nat of η | 130 -- nat of η |
92 | 131 |
93 | 132 |
94 -- g ○ f = μ(c) T(g) f | 133 -- g ○ f = μ(c) T(g) f |
95 | |
96 -- h ○ (g ○ f) = (h ○ g) ○ f | 134 -- h ○ (g ○ f) = (h ○ g) ○ f |
97 | 135 |
98 -- η(b) ○ f = f | 136 -- η(b) ○ f = f |
99 -- f ○ η(a) = f | 137 -- f ○ η(a) = f |
100 | 138 |
101 | 139 |
140 record Kleisli { c₁ c₂ ℓ : Level} { A : Category c₁ c₂ ℓ } | |
141 { T : Functor A A } | |
142 { η : NTrans A A identityFunctor T } | |
143 { μ : NTrans A A (T ○ T) T } | |
144 { M : Monad A T η μ } : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where | |
145 infix 9 _*_ | |
146 _*_ : { a b c : Obj A } -> | |
147 ( Hom A b ( FObj T c )) -> ( Hom A a ( FObj T b)) -> Hom A a ( FObj T c ) | |
148 g * f = A [ Trans μ ({!!} (Category.cod A g)) o A [ FMap T g o f ] ] | |
149 | |
150 | |
151 | |
152 -- Kleisli : | |
153 -- Kleisli = record { Hom = | |
154 -- ; Hom = _⟶_ | |
155 -- ; Id = IdProd | |
156 -- ; _o_ = _∘_ | |
157 -- ; _≈_ = _≈_ | |
158 -- ; isCategory = record { isEquivalence = record { refl = λ {φ} → ≈-refl {φ = φ} | |
159 -- ; sym = λ {φ ψ} → ≈-symm {φ = φ} {ψ} | |
160 -- ; trans = λ {φ ψ σ} → ≈-trans {φ = φ} {ψ} {σ} | |
161 -- } | |
162 -- ; identityL = identityL | |
163 -- ; identityR = identityR | |
164 -- ; o-resp-≈ = o-resp-≈ | |
165 -- ; associative = associative | |
166 -- } | |
167 -- } |