Mercurial > hg > Members > kono > Proof > category
diff CCC.agda @ 780:b44c1c6ce646
CCC in Hom form
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 08 Oct 2018 16:48:27 +0900 |
parents | 6b4bd02efd80 |
children | 340708e8d54f |
line wrap: on
line diff
--- a/CCC.agda Sat Oct 06 13:42:27 2018 +0900 +++ b/CCC.agda Mon Oct 08 16:48:27 2018 +0900 @@ -4,7 +4,9 @@ open import HomReasoning open import cat-utility -open import Data.Product renaming (_×_ to _*_) +open import Data.Product renaming (_×_ to _∧_) +open import Category.Constructions.Product +open import Relation.Binary.PropositionalEquality open Functor @@ -12,23 +14,46 @@ -- ccc-2 : Hom A c (a × b) ≅ (Hom A c a ) × ( Hom A c b ) -- ccc-3 : Hom A a (c ^ b) ≅ Hom A (a × b) c -record _≅_ {c₁ c₂ ℓ ℓ' : Level} {A : Category c₁ c₂ ℓ} {a b : Obj A} (f : Hom A a b) (S : Set ℓ') : Set ( c₁ ⊔ c₂ ⊔ ℓ ⊔ ℓ' ) where +record IsoS {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') (a b : Obj A) ( a' b' : Obj B ) + : Set ( c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁' ⊔ c₂' ⊔ ℓ' ) where field - ≅→ : {!!} - ≅← : {!!} - iso→ : {!!} - iso← : {!!} + ≅→ : Hom A a b → Hom B a' b' + ≅← : Hom B a' b' → Hom A a b + iso→ : {f : Hom B a' b' } → B [ ≅→ ( ≅← f) ≈ f ] + iso← : {f : Hom A a b } → A [ ≅← ( ≅→ f) ≈ f ] data One {c : Level} : Set c where OneObj : One -- () in Haskell ( or any one object set ) +OneCat : Category Level.zero Level.zero Level.zero +OneCat = record { + Obj = One ; + Hom = λ a b → One ; + _o_ = λ{a} {b} {c} x y → OneObj ; + _≈_ = λ x y → x ≡ y ; + Id = λ{a} → OneObj ; + isCategory = record { + isEquivalence = record {refl = refl ; trans = trans ; sym = sym } ; + identityL = λ{a b f} → lemma {a} {b} {f} ; + identityR = λ{a b f} → lemma {a} {b} {f} ; + o-resp-≈ = λ{a b c f g h i} _ _ → refl ; + associative = λ{a b c d f g h } → refl + } + } where + lemma : {a b : One {Level.zero}} → { f : One {Level.zero}} → OneObj ≡ f + lemma {a} {b} {f} with f + ... | OneObj = refl + record isCCC {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (one : Obj A) - ( _×_ : Obj A → Obj A → Obj A ) ( _^_ : Obj A → Obj A → Obj A ) : Set ( c₁ ⊔ c₂ ⊔ ℓ ) where + ( _*_ : Obj A → Obj A → Obj A ) ( _^_ : Obj A → Obj A → Obj A ) : Set ( c₁ ⊔ c₂ ⊔ ℓ ) where field - ccc-1 : {a : Obj A} → Hom A a one ≅ One {ℓ} - ccc-2 : {a b c : Obj A} → Hom A c ( a × b ) ≅ ( Hom A c a ) * ( Hom A c b ) - ccc-3 : {a b c : Obj A} → Hom A a ( c ^ b ) ≅ Hom A ( a × b ) c + ccc-1 : {a : Obj A} → -- Hom A a one ≅ {*} + IsoS A OneCat a one OneObj OneObj + ccc-2 : {a b c : Obj A} → -- Hom A c ( a * b ) ≅ ( Hom A c a ) * ( Hom A c b ) + IsoS A (A × A) c (a * b) (c , c) (a , b) + ccc-3 : {a b c : Obj A} → -- Hom A a ( c ^ b ) ≅ Hom A ( a * b ) c + IsoS A A a (c ^ b) (a * b) c