annotate CCC.agda @ 780:b44c1c6ce646

CCC in Hom form
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Mon, 08 Oct 2018 16:48:27 +0900
parents 6b4bd02efd80
children 340708e8d54f
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
rev   line source
779
6b4bd02efd80 CCC start
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
1 open import Level
6b4bd02efd80 CCC start
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
2 open import Category
6b4bd02efd80 CCC start
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
3 module CCC where
6b4bd02efd80 CCC start
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
4
6b4bd02efd80 CCC start
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
5 open import HomReasoning
6b4bd02efd80 CCC start
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
6 open import cat-utility
780
b44c1c6ce646 CCC in Hom form
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 779
diff changeset
7 open import Data.Product renaming (_×_ to _∧_)
b44c1c6ce646 CCC in Hom form
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 779
diff changeset
8 open import Category.Constructions.Product
b44c1c6ce646 CCC in Hom form
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 779
diff changeset
9 open import Relation.Binary.PropositionalEquality
779
6b4bd02efd80 CCC start
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
10
6b4bd02efd80 CCC start
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
11 open Functor
6b4bd02efd80 CCC start
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
12
6b4bd02efd80 CCC start
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
13 -- ccc-1 : Hom A a 1 ≅ {*}
6b4bd02efd80 CCC start
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
14 -- ccc-2 : Hom A c (a × b) ≅ (Hom A c a ) × ( Hom A c b )
6b4bd02efd80 CCC start
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
15 -- ccc-3 : Hom A a (c ^ b) ≅ Hom A (a × b) c
6b4bd02efd80 CCC start
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
16
780
b44c1c6ce646 CCC in Hom form
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 779
diff changeset
17 record IsoS {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') (a b : Obj A) ( a' b' : Obj B )
b44c1c6ce646 CCC in Hom form
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 779
diff changeset
18 : Set ( c₁ ⊔ c₂ ⊔ ℓ ⊔ c₁' ⊔ c₂' ⊔ ℓ' ) where
779
6b4bd02efd80 CCC start
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
19 field
780
b44c1c6ce646 CCC in Hom form
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 779
diff changeset
20 ≅→ : Hom A a b → Hom B a' b'
b44c1c6ce646 CCC in Hom form
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 779
diff changeset
21 ≅← : Hom B a' b' → Hom A a b
b44c1c6ce646 CCC in Hom form
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 779
diff changeset
22 iso→ : {f : Hom B a' b' } → B [ ≅→ ( ≅← f) ≈ f ]
b44c1c6ce646 CCC in Hom form
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 779
diff changeset
23 iso← : {f : Hom A a b } → A [ ≅← ( ≅→ f) ≈ f ]
779
6b4bd02efd80 CCC start
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
24
6b4bd02efd80 CCC start
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
25 data One {c : Level} : Set c where
6b4bd02efd80 CCC start
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
26 OneObj : One -- () in Haskell ( or any one object set )
6b4bd02efd80 CCC start
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
27
780
b44c1c6ce646 CCC in Hom form
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 779
diff changeset
28 OneCat : Category Level.zero Level.zero Level.zero
b44c1c6ce646 CCC in Hom form
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 779
diff changeset
29 OneCat = record {
b44c1c6ce646 CCC in Hom form
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 779
diff changeset
30 Obj = One ;
b44c1c6ce646 CCC in Hom form
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 779
diff changeset
31 Hom = λ a b → One ;
b44c1c6ce646 CCC in Hom form
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 779
diff changeset
32 _o_ = λ{a} {b} {c} x y → OneObj ;
b44c1c6ce646 CCC in Hom form
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 779
diff changeset
33 _≈_ = λ x y → x ≡ y ;
b44c1c6ce646 CCC in Hom form
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 779
diff changeset
34 Id = λ{a} → OneObj ;
b44c1c6ce646 CCC in Hom form
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 779
diff changeset
35 isCategory = record {
b44c1c6ce646 CCC in Hom form
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 779
diff changeset
36 isEquivalence = record {refl = refl ; trans = trans ; sym = sym } ;
b44c1c6ce646 CCC in Hom form
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 779
diff changeset
37 identityL = λ{a b f} → lemma {a} {b} {f} ;
b44c1c6ce646 CCC in Hom form
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 779
diff changeset
38 identityR = λ{a b f} → lemma {a} {b} {f} ;
b44c1c6ce646 CCC in Hom form
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 779
diff changeset
39 o-resp-≈ = λ{a b c f g h i} _ _ → refl ;
b44c1c6ce646 CCC in Hom form
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 779
diff changeset
40 associative = λ{a b c d f g h } → refl
b44c1c6ce646 CCC in Hom form
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 779
diff changeset
41 }
b44c1c6ce646 CCC in Hom form
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 779
diff changeset
42 } where
b44c1c6ce646 CCC in Hom form
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 779
diff changeset
43 lemma : {a b : One {Level.zero}} → { f : One {Level.zero}} → OneObj ≡ f
b44c1c6ce646 CCC in Hom form
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 779
diff changeset
44 lemma {a} {b} {f} with f
b44c1c6ce646 CCC in Hom form
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 779
diff changeset
45 ... | OneObj = refl
b44c1c6ce646 CCC in Hom form
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 779
diff changeset
46
779
6b4bd02efd80 CCC start
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
47
6b4bd02efd80 CCC start
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
48 record isCCC {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (one : Obj A)
780
b44c1c6ce646 CCC in Hom form
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 779
diff changeset
49 ( _*_ : Obj A → Obj A → Obj A ) ( _^_ : Obj A → Obj A → Obj A ) : Set ( c₁ ⊔ c₂ ⊔ ℓ ) where
779
6b4bd02efd80 CCC start
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
50 field
780
b44c1c6ce646 CCC in Hom form
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 779
diff changeset
51 ccc-1 : {a : Obj A} → -- Hom A a one ≅ {*}
b44c1c6ce646 CCC in Hom form
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 779
diff changeset
52 IsoS A OneCat a one OneObj OneObj
b44c1c6ce646 CCC in Hom form
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 779
diff changeset
53 ccc-2 : {a b c : Obj A} → -- Hom A c ( a * b ) ≅ ( Hom A c a ) * ( Hom A c b )
b44c1c6ce646 CCC in Hom form
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 779
diff changeset
54 IsoS A (A × A) c (a * b) (c , c) (a , b)
b44c1c6ce646 CCC in Hom form
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 779
diff changeset
55 ccc-3 : {a b c : Obj A} → -- Hom A a ( c ^ b ) ≅ Hom A ( a * b ) c
b44c1c6ce646 CCC in Hom form
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents: 779
diff changeset
56 IsoS A A a (c ^ b) (a * b) c
779
6b4bd02efd80 CCC start
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
57
6b4bd02efd80 CCC start
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
58
6b4bd02efd80 CCC start
Shinji KONO <kono@ie.u-ryukyu.ac.jp>
parents:
diff changeset
59