view deductive.agda @ 791:376c07159acf

deduction theorem
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Sun, 21 Apr 2019 17:43:01 +0900
parents
children 5bee48f7c126
line wrap: on
line source

module deductive (Atom : Set) where

-- Deduction Theorem

-- positive logic ( deductive system based on graph ) 

data Obj : Set where
   ⊤ : Obj 
   atom : Atom → Obj
   _∧_ : Obj → Obj → Obj
   _<=_ : Obj → Obj → Obj

data Arrow  : Obj → Obj → Set where
   hom : (a b : Obj) → Arrow a b
   id : (a : Obj ) → Arrow a a
   _・_ : {a b c : Obj } → Arrow b c → Arrow a b → Arrow a c 
   ○ : {a : Obj } → Arrow a ⊤
   π : {a b : Obj } → Arrow ( a ∧ b ) a
   π' : {a b : Obj } → Arrow ( a ∧ b ) b
   <_,_> : {a b c : Obj } → Arrow c a → Arrow c b → Arrow c (a ∧ b) 
   ε : {a b : Obj } → Arrow ((a <= b) ∧ b ) a
   _* : {a b c : Obj } → Arrow (c ∧ b ) a → Arrow c ( a <= b )

-- every proof b →  c with assumption a has following forms

data  φ  {a : Obj} ( x : Arrow ⊤ a ) : {b c : Obj} → Arrow b c → Set where
   i : {b c : Obj} → φ x ( hom b c )
   ii : φ x {⊤} {a} x
   iii : {b c' c'' : Obj } { f : Arrow b c' } { g : Arrow b c'' } (ψ : φ x f ) (χ : φ x g ) → φ x < f , g > 
   iv : {b c d : Obj } { f : Arrow d c } { g : Arrow b d } (ψ : φ x f ) (χ : φ x g ) → φ x ( f ・ g )
   v : {b c' c'' : Obj } { f : Arrow (b ∧ c') c'' }  (ψ : φ x f )  → φ x ( f * )

α : {a b c : Obj } → Arrow (( a ∧ b ) ∧ c ) ( a ∧ ( b ∧ c ) )
α = < π  ・ π   , < π'  ・ π  , π'  > >

-- genetate (a ∧ b) → c proof from  proof b →  c with assumption a

kx∈a : {a b c : Obj } → ( x : Arrow ⊤ a ) → {z : Arrow b c } → ( y  : φ {a} x z ) → Arrow (a ∧ b) c
kx∈a x {k} i = k ・ π'
kx∈a x ii = π
kx∈a x (iii ψ χ ) = < kx∈a x ψ  , kx∈a x χ  >
kx∈a x (iv ψ χ ) = kx∈a x ψ  ・ < π , kx∈a x χ  >
kx∈a x (v ψ ) = ( kx∈a x ψ  ・ α ) *