Mercurial > hg > Members > kono > Proof > category
view equalizer.agda @ 210:51c57efe89b9
α b1
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 02 Sep 2013 22:21:51 +0900 |
parents | 4e138cc953f3 |
children | 8c738327df19 |
line wrap: on
line source
--- -- -- Equalizer -- -- e f -- c --------> a ----------> b -- ^ . ----------> -- | . g -- |k . -- | . h -- d -- -- Shinji KONO <kono@ie.u-ryukyu.ac.jp> ---- open import Category -- https://github.com/konn/category-agda open import Level open import Category.Sets module equalizer { c₁ c₂ ℓ : Level} { A : Category c₁ c₂ ℓ } where open import HomReasoning open import cat-utility record Equalizer { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {c a b : Obj A} (f g : Hom A a b) : Set (ℓ ⊔ (c₁ ⊔ c₂)) where field e : Hom A c a ef=eg : A [ A [ f o e ] ≈ A [ g o e ] ] k : {d : Obj A} (h : Hom A d a) → A [ A [ f o h ] ≈ A [ g o h ] ] → Hom A d c ke=h : {d : Obj A} → ∀ {h : Hom A d a} → (eq : A [ A [ f o h ] ≈ A [ g o h ] ] ) → A [ A [ e o k {d} h eq ] ≈ h ] uniqueness : {d : Obj A} → ∀ {h : Hom A d a} → (eq : A [ A [ f o h ] ≈ A [ g o h ] ] ) → {k' : Hom A d c } → A [ A [ e o k' ] ≈ h ] → A [ k {d} h eq ≈ k' ] equalizer : Hom A c a equalizer = e record EqEqualizer { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {c a b : Obj A} (f g : Hom A a b) : Set (ℓ ⊔ (c₁ ⊔ c₂)) where field α : (f : Hom A a b) → (g : Hom A a b ) → Hom A c a -- γ : {d e a b : Obj A} → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) → Hom A c e -- δ : {a b : Obj A} → (f : Hom A a b) → Hom A a c b1 : {e : Obj A } → A [ A [ f o α f g ] ≈ A [ g o α f g ] ] -- b2 : {e d : Obj A } → {h : Hom A d a } → A [ A [ α {e} f g o γ f g h ] ≈ A [ h o α {c} (A [ f o h ]) (A [ g o h ]) ] ] -- b3 : {e : Obj A} → A [ A [ α f f o δ f ] ≈ id1 A a ] -- b4 : {c d : Obj A } {k : Hom A c a} → A [ β f g ( A [ α f g o k ] ) ≈ k ] -- b4 : {d : Obj A } {k : Hom A d c} → A [ A [ γ f g ( A [ α f g o k ] ) o δ (A [ f o A [ α f g o k ] ] ) ] ≈ k ] -- A [ α f g o β f g h ] ≈ h -- β : { d e a b : Obj A} → (f : Hom A a b) → (g : Hom A a b ) → (h : Hom A d a ) → Hom A d e -- β {d} f g h = A [ γ f g h o δ {d} (A [ f o h ]) ] open Equalizer open EqEqualizer lemma-equ1 : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) {a b c : Obj A} (f g : Hom A a b) → Equalizer A {c} f g → EqEqualizer A {c} f g lemma-equ1 A {a} {b} {c} f g eqa = record { α = λ f g → e eqa ; -- Hom A c a -- γ = λ {d} {e} {a} {b} f g h → {!!} ; -- Hom A c e -- δ = λ {a} {b} f → {!!} ; -- Hom A a c b1 = ef=eg eqa -- ; -- b2 = {!!} ; -- b3 = {!!} ; -- b4 = {!!} }