view freyd2.agda @ 609:d686d7ae38e0

on goging
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Mon, 12 Jun 2017 16:35:34 +0900
parents 7194ba55df56
children 3fb4d834c349
line wrap: on
line source

open import Category -- https://github.com/konn/category-agda                                                                                     
open import Level
open import Category.Sets

module freyd2 
   where

open import HomReasoning
open import cat-utility
open import Relation.Binary.Core
open import Function

----------
--
--    a : Obj A
--    U : A → Sets
--    U ⋍ Hom (a,-)
--

----
-- C is locally small i.e. Hom C i j is a set c₁
--
record Small  {  c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I :  Set  c₁ )
                : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where
   field
     hom→ : {i j : Obj C } →    Hom C i j →  I
     hom← : {i j : Obj C } →  ( f : I ) →  Hom C i j
     hom-iso : {i j : Obj C } →  { f : Hom C i j } →   hom← ( hom→ f )  ≡ f

open Small

postulate ≈-≡ :  { c₁ c₂ ℓ : Level} { A : Category c₁ c₂ ℓ }  {a b : Obj A } { x y : Hom A a b } →  (x≈y : A [ x ≈ y  ]) → x ≡ y

import Relation.Binary.PropositionalEquality
-- Extensionality a b = {A : Set a} {B : A → Set b} {f g : (x : A) → B x} → (∀ x → f x ≡ g x) → f ≡ g → ( λ x → f x ≡ λ x → g x )
postulate extensionality : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) → Relation.Binary.PropositionalEquality.Extensionality c₂ c₂


----
--
--  Hom ( a, - ) is Object mapping in co Yoneda Functor
--
----

open NTrans 
open Functor
open Limit
open IsLimit
open import Category.Cat

HomA : { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) (a : Obj A) → Functor A (Sets {c₂})
HomA  {c₁} {c₂} {ℓ} A  a = record {
    FObj = λ b → Hom A a b
  ; FMap = λ {x} {y} (f : Hom A x y ) → λ ( g : Hom A a x ) → A [ f o g ]    --   f : Hom A x y  → Hom Sets (Hom A a x ) (Hom A a y)
  ; isFunctor = record {
             identity =  λ {b} → extensionality A ( λ x → lemma-y-obj1 {b} x ) ;
             distr = λ {a} {b} {c} {f} {g} → extensionality A ( λ x → lemma-y-obj2 a b c f g x ) ;
             ≈-cong = λ eq → extensionality A ( λ x →  lemma-y-obj3 x eq ) 
        } 
    }  where
        lemma-y-obj1 : {b : Obj A } → (x : Hom A a b) →  A [ id1 A b o x ] ≡ x
        lemma-y-obj1 {b} x = let open ≈-Reasoning A  in ≈-≡ {_} {_} {_} {A} idL
        lemma-y-obj2 :  (a₁ b c : Obj A) (f : Hom A a₁ b) (g : Hom A b c ) → (x : Hom A a a₁ )→ 
               A [ A [ g o f ] o x ] ≡ (Sets [ _[_o_] A g o _[_o_] A f ]) x
        lemma-y-obj2 a₁ b c f g x = let open ≈-Reasoning A in ≈-≡ {_} {_} {_} {A} ( begin
               A [ A [ g o f ] o x ]
             ≈↑⟨ assoc ⟩
               A [ g o A [ f o x ] ]
             ≈⟨⟩
               ( λ x →  A [ g o x  ]  ) ( ( λ x → A [ f o x ] ) x )
             ∎ )
        lemma-y-obj3 :  {b c : Obj A} {f g : Hom A b c } → (x : Hom A a b ) → A [ f ≈ g ] →   A [ f o x ] ≡ A [ g o x ]
        lemma-y-obj3 {_} {_} {f} {g} x eq =  let open ≈-Reasoning A in ≈-≡ {_} {_} {_} {A}   ( begin
                A [ f o x ]
             ≈⟨ resp refl-hom eq ⟩
                A [ g o x ]
             ∎ )

-- Representable  U  ≈ Hom(A,-)

record Representable  { c₁ c₂ ℓ : Level} ( A : Category c₁ c₂ ℓ ) ( U : Functor A (Sets {c₂}) ) (a : Obj A) : Set  (suc ℓ ⊔ (suc (suc c₂) ⊔ suc c₁ ))  where
   field
         -- FObj U x  :  A  → Set
         -- FMap U f  =  Set → Set (locally small)
         -- λ b → Hom (a,b) :  A → Set
         -- λ f → Hom (a,-) = λ b → Hom  a b    

         repr→ : NTrans A (Sets {c₂}) U (HomA A a )
         repr← : NTrans A (Sets {c₂}) (HomA A a)  U
         reprId→  :  {x : Obj A} →  Sets [ Sets [ TMap repr→ x  o  TMap repr← x ] ≈ id1 (Sets {c₂}) (FObj (HomA A a) x )]
         reprId←  :  {x : Obj A} →  Sets [ Sets [ TMap repr← x  o  TMap repr→ x ] ≈ id1 (Sets {c₂}) (FObj U x)]

open Representable
open import freyd

_↓_ :  { c₁ c₂ ℓ : Level}  { c₁' c₂' ℓ' : Level} { A : Category c₁ c₂ ℓ } { B : Category c₁' c₂' ℓ' }
    →  ( F G : Functor A B )
    →  Category  (c₂' ⊔ c₁) (ℓ' ⊔ c₂) ℓ
_↓_   { c₁} {c₂} {ℓ} {c₁'} {c₂'} {ℓ'}  { A } { B } F G  = CommaCategory
         where open import Comma1 F G

open import freyd
open SmallFullSubcategory
open Complete
open PreInitial
open HasInitialObject
open import Comma1
open CommaObj
open LimitPreserve

-- Representable Functor U preserve limit , so K{*}↓U is complete

UpreserveLimit : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) (I : Category c₁ c₂ ℓ)
      (comp : Complete A A)
      (U : Functor A (Sets) )
      (a : Obj A )
      (R : Representable A U a ) → LimitPreserve A I Sets U 
UpreserveLimit A I comp U a R = record {
       preserve =  λ Γ lim → record {
             limit = λ a t → {!!}
           ; t0f=t = λ {a t i} → ?
           ; limit-uniqueness = λ {a} {t} {f} t0f=t → {!!}
         }
   }

-- K{*}↓U has preinitial full subcategory then U is representable
--    K{*}↓U is complete, so it has initial object

UisRepresentable : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ)
      (comp : Complete A A)
      (U : Functor A (Sets {c₂}) )
      (a : Obj Sets )
      (x : Obj ( K (Sets) A a ↓ U) )
      ( init : HasInitialObject {c₁} {c₂} {ℓ}  ( K (Sets) A a ↓ U ) x )
        → Representable A U (obj x)
UisRepresentable A comp U a x init = record {
         repr→ = record { TMap = {!!} ; isNTrans = record { commute = {!!} } }
         ; repr← = record { TMap = {!!} ; isNTrans = record { commute = {!!} } }
         ; reprId→  = λ {y}  → ?
         ; reprId←  = λ {y}  → ?
    }

-- K{*}↓U has preinitial full subcategory if U is representable
--     if U is representable,  K{*}↓U has initial Object ( so it has preinitial full subcategory )

KUhasInitialObj : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ)
      (comp : Complete A A)
      (U : Functor A (Sets) )
      (a : Obj A )
      (R : Representable A U a ) →
      HasInitialObject {c₁} {c₂} {ℓ}  ( K (Sets) A (FObj U a) ↓ U ) ( record  { obj = a ; hom = id1 Sets (FObj U a) } )
KUhasInitialObj A comp U a R = record {
           initial =  λ b → {!!}
         ; uniqueness =  λ b f → {!!}
     }