changeset 595:0386e82f0dd8

dead end
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Tue, 23 May 2017 10:37:39 +0900
parents db76b73b526c
children
files SetsCompleteness.agda
diffstat 1 files changed, 16 insertions(+), 6 deletions(-) [+]
line wrap: on
line diff
--- a/SetsCompleteness.agda	Mon May 22 12:04:34 2017 +0900
+++ b/SetsCompleteness.agda	Tue May 23 10:37:39 2017 +0900
@@ -110,8 +110,8 @@
 irr : { c₂ : Level}  {d : Set c₂ }  { x y : d } ( eq eq' :  x  ≡ y ) → eq ≡ eq'
 irr refl refl = refl
 
-elm-cong :  {  c₂ : Level}  →  {a b : Obj (Sets {c₂}) }  {f g : Hom (Sets {c₂}) a b} →   (x y : sequ a b f g) → equ x ≡ equ y →  x  ≡ y
-elm-cong ( elem x eq  ) (elem .x eq' ) refl   =  ≡cong ( λ ee → elem x ee ) ( irr eq eq' )
+elem-cong :  {  c₂ : Level}  →  {a b : Obj (Sets {c₂}) }  {f g : Hom (Sets {c₂}) a b} →   (x y : sequ a b f g) → equ x ≡ equ y →  x  ≡ y
+elem-cong ( elem x eq  ) (elem .x eq' ) refl   =  ≡cong ( λ ee → elem x ee ) ( irr eq eq' )
 
 fe=ge  : {  c₂ : Level}  →  {a b : Obj (Sets {c₂}) }  {f g : Hom (Sets {c₂}) a b} 
      →  Sets [ Sets [ f o (λ e → equ {_} {a} {b} {f} {g} e ) ] ≈ Sets [ g o (λ e → equ e ) ] ]
@@ -143,7 +143,7 @@
                 Sets [ Sets [ (λ e → equ e) o k' ] ≈ h ] → Sets [ k h fh=gh  ≈ k' ]
            uniqueness  {d} {h} {fh=gh} {k'} ek'=h =  extensionality Sets  ( λ ( x : d ) →  begin
                 k h fh=gh x
-             ≡⟨ elm-cong ( k h fh=gh x) (  k' x ) (lemma5 {d} {h} {fh=gh} {k'} ek'=h x )  ⟩
+             ≡⟨ elem-cong ( k h fh=gh x) (  k' x ) (lemma5 {d} {h} {fh=gh} {k'} ek'=h x )  ⟩
                 k' x
              ∎  ) where
                   open  import  Relation.Binary.PropositionalEquality
@@ -226,11 +226,11 @@
      record { slproj = λ i →  slproj s i ; slequ  = λ i j f → slequ s i j f  }
  ≡⟨ 
     ≡cong2 ( λ x y →
-      record { slproj = λ i → x i  ; slequ  = λ i j f → {!!} } )  (  extensionality Sets  ( λ  i  →  eq1 i ) )
+      record { slproj = λ i → x i  ; slequ  = λ i j f → y x i j f} )  (  extensionality Sets  ( λ  i  →  eq1 i ) )
            ( extensionality Sets  ( λ  x  → 
            ( extensionality Sets  ( λ  i  → 
              ( extensionality Sets  ( λ  j  → 
-               ( extensionality Sets  ( λ  f  → {!!} 
+               ( extensionality Sets  ( λ  f  →  elem-cong {!!} {!!} {!!}
              ))))))))

      record { slproj = λ i →  slproj t i ; slequ  = λ i j f → slequ t i j f  }
@@ -260,7 +260,17 @@
                   limit1 a t x
              ≡⟨⟩
                   record { slproj = λ i →  TMap t i x  ; slequ =  λ i j f → elem i ( ≡cong ( λ f → f x ) ( IsNTrans.commute ( isNTrans t ) )) }
-             ≡⟨ snat-cong (ΓObj s Γ) (ΓMap s Γ) (eq1 x) (eq2 x ) (eq3 x ) ⟩
+             ≡⟨
+                    ≡cong2 ( λ z y →
+                      record { slproj = λ i → z i  ; slequ  = λ i j f' → elem i (y z i j f')} )  (  extensionality Sets  ( λ  i  →  eq1 x i ) )
+                           ( extensionality Sets  ( λ  z  →
+                           ( extensionality Sets  ( λ  i  →
+                             ( extensionality Sets  ( λ  j  →
+                               ( extensionality Sets  ( λ  f'  →  irr (eq2 x i j f' ){!!}
+                             ))))))))
+             ⟩
+                  record { slproj = λ i →  slproj  (f x ) i  ; slequ =   λ i j f' → elem i (fe=ge0 (slequ (f x) i j f')) }
+             ≡⟨ {!!} ⟩
                   record { slproj = λ i →  slproj  (f x ) i  ; slequ = slequ (f x ) }
              ≡⟨⟩
                   f x