Mercurial > hg > Members > kono > Proof > category
changeset 1104:043bd660753b
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 24 Jan 2023 23:23:20 +0900 |
parents | 57683a6e5674 |
children | 3cf570d5c285 |
files | src/group.agda |
diffstat | 1 files changed, 9 insertions(+), 16 deletions(-) [+] |
line wrap: on
line diff
--- a/src/group.agda Tue Jan 24 23:10:15 2023 +0900 +++ b/src/group.agda Tue Jan 24 23:23:20 2023 +0900 @@ -187,11 +187,8 @@ GC : (G : Obj Groups ) → Category c c (suc c) GC G = record { Obj = Lift c ⊤ ; Hom = λ _ _ → ≡-Group.Carrier G ; _o_ = ≡-Group._∙_ G } -U : (G H : Obj Groups ) → (f : Homomorph G H ) → Functor (GC G) (GC H) -U G H f = record { FObj = λ _ → lift tt ; FMap = λ an → morph f ? } - F : (G H : Obj Groups ) → (f : Homomorph G H ) → (K : NormalGroup G) → Functor (GC H) (GC (G / K)) -F G H f = ? --record { FObj = λ _ → lift tt ; FMap = λ x → morph f x } +F G H f K = record { FObj = λ _ → lift tt ; FMap = λ x y → record { a = ? ; n = ? ; x=aN = ? } ; isFunctor = ? } -- f f ε -- G --→ H G --→ H (a) @@ -200,25 +197,21 @@ -- ↓ / ↓ / -- G/K G/K -fundamentalTheorem : (G H : Obj Groups ) → (K : NormalGroup G) → (f : Homomorph G H ) - → ( kerf⊆K : (x : ≡-Group.Carrier G) → aN K x → morph f x ≡ ≡-Group.ε H ) - → UniversalMapping (GC G) (GC H) ? -fundamentalTheorem G H K f kerf⊆K = record { U = λ _ → lift tt ; ε = λ _ → ? ; _* = ? ; isUniversalMapping - = record { universalMapping = λ {a} {b} {g} → ? ; uniquness = ? }} - fundamentalTheorem' : (G H : Obj Groups ) → (K : NormalGroup G) → (f : Homomorph G H ) → ( kerf⊆K : (x : ≡-Group.Carrier G) → aN K x → morph f x ≡ ≡-Group.ε H ) → coUniversalMapping (GC H) (GC (G / K)) (F G H f K ) -fundamentalTheorem' G H K f kerf⊆K = record { U = λ _ → lift tt ; ε = λ _ → ? ; _* = ? ; iscoUniversalMapping - = record { couniversalMapping = λ {a} {b} {g} → ? ; uniquness = ? }} where +fundamentalTheorem' G H K f kerf⊆K = record { U = λ _ → lift tt ; ε = λ _ g → record { a = ? ; n = ? ; x=aN = ? } + ; _* = λ {b} {a} g → solution {b} {a} g ; iscoUniversalMapping + = record { couniversalMapping = ? ; uniquness = ? }} where m : Homomorph G G m = NormalGroup.normal K φ⁻¹ : ≡-Group.Carrier (G / K) → ≡-Group.Carrier G φ⁻¹ = ? - --- f ( φ⁻¹ z ) ) ≡ g - solution : {b : Obj (GC H)} {a : Obj (GC (G / K))} → Hom (GC H) (lift tt) b → Hom (GC G) a (lift tt) - solution g = ? - is-solution : (a : Obj (GC G)) (b : Obj (GC (G / K))) (g : Hom (GC H) (lift tt) a ) → GC H [ GC H [ ≡-Group.ε H o morph f ? ] ≈ g ] + solution : {b : Obj (GC (G / K))} {a : Obj (GC H)} { f0 : Hom (GC (G / K)) (lift tt) b} → + GC (G / K) [ GC (G / K) [ (λ g → record { a = ? ; n = ? ; x=aN = ? }) o + (λ y → record { a = ? ; n = ? ; x=aN = ? }) ] ≈ f0 ] + solution = ? + is-solution : ? is-solution a b g = ?