Mercurial > hg > Members > kono > Proof > category
changeset 491:04da2c458d44
comma-a0 commuativity remains
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 13 Mar 2017 10:41:07 +0900 |
parents | 1a42f06e7ae1 |
children | c7b8017bcd4d |
files | freyd1.agda |
diffstat | 1 files changed, 54 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/freyd1.agda Mon Mar 13 09:51:44 2017 +0900 +++ b/freyd1.agda Mon Mar 13 10:41:07 2017 +0900 @@ -43,31 +43,39 @@ id1 A (obj (FObj Γ x)) ∎ -FICG : { I : Category c₁ c₂ ℓ } → ( Γ : Functor I CommaCategory ) → Functor I C -FICG {I} Γ = G ○ (FIA Γ) +NIA : { I : Category c₁ c₂ ℓ } → ( Γ : Functor I CommaCategory ) + (c : Obj CommaCategory ) ( ta : NTrans I CommaCategory ( K CommaCategory I c ) Γ ) → NTrans I A ( K A I (obj c) ) (FIA Γ) +NIA {I} Γ c ta = record { + TMap = λ x → arrow (TMap ta x ) + ; isNTrans = record { commute = comm1 } + } where + comm1 : {a b : Obj I} {f : Hom I a b} → + A [ A [ FMap (FIA Γ) f o arrow (TMap ta a) ] ≈ A [ arrow (TMap ta b) o FMap (K A I (obj c)) f ] ] + comm1 {a} {b} {f} = IsNTrans.commute (isNTrans ta ) + open LimitPreserve LimitC : { I : Category c₁ c₂ ℓ } → ( comp : Complete A I ) → ( Γ : Functor I CommaCategory ) → ( glimit : LimitPreserve A I C G ) - → Limit C I (FICG Γ) + → Limit C I (G ○ (FIA Γ)) LimitC {I} comp Γ glimit = plimit glimit (FIA Γ) (climit comp (FIA Γ)) frev : { I : Category c₁ c₂ ℓ } → (comp : Complete A I) → ( Γ : Functor I CommaCategory ) (i : Obj I ) → Hom A (limit-c comp (FIA Γ)) (obj (FObj Γ i)) frev comp Γ i = TMap (t0 ( climit comp (FIA Γ))) i tu : { I : Category c₁ c₂ ℓ } → ( comp : Complete A I) → ( Γ : Functor I CommaCategory ) - → NTrans I C (K C I (FObj F (limit-c comp (FIA Γ)))) (FICG Γ) + → NTrans I C (K C I (FObj F (limit-c comp (FIA Γ)))) (G ○ (FIA Γ)) tu {I} comp Γ = record { TMap = λ i → C [ hom ( FObj Γ i ) o FMap F (frev comp Γ i) ] ; isNTrans = record { commute = λ {a} {b} {f} → commute {a} {b} {f} } } where commute : {a b : Obj I} {f : Hom I a b} → - C [ C [ FMap (FICG Γ) f o C [ hom (FObj Γ a) o FMap F (frev comp Γ a) ] ] + C [ C [ FMap (G ○ (FIA Γ)) f o C [ hom (FObj Γ a) o FMap F (frev comp Γ a) ] ] ≈ C [ C [ hom (FObj Γ b) o FMap F (frev comp Γ b) ] o FMap (K C I (FObj F (limit-c comp (FIA Γ)))) f ] ] commute {a} {b} {f} = let open ≈-Reasoning (C) in begin - FMap (FICG Γ) f o ( hom (FObj Γ a) o FMap F (frev comp Γ a) ) + FMap (G ○ (FIA Γ)) f o ( hom (FObj Γ a) o FMap F (frev comp Γ a) ) ≈⟨⟩ FMap G (arrow (FMap Γ f ) ) o ( hom (FObj Γ a) o FMap F ( TMap (t0 ( climit comp (FIA Γ))) a )) ≈⟨ assoc ⟩ @@ -139,6 +147,43 @@ TMap (limit-u comp (FIA Γ)) b o FMap (K A I (limit-c comp (FIA Γ))) f ∎ +comma-a0 : { I : Category c₁ c₂ ℓ } → ( comp : Complete A I) → ( Γ : Functor I CommaCategory ) + → ( glimit : LimitPreserve A I C G ) (a : CommaObj) → ( t : NTrans I CommaCategory (K CommaCategory I a) Γ ) → Hom CommaCategory a (commaLimit comp Γ glimit) +comma-a0 {I} comp Γ glimit a t = record { + arrow = limit (isLimit ( climit comp (FIA Γ) ) ) (obj a ) (NIA {I} Γ a t ) + ; comm = comm1 + } where + comm1 : C [ C [ FMap G (limit (isLimit (climit comp (FIA Γ))) (obj a) (NIA Γ a t)) o hom a ] + ≈ C [ hom (commaLimit comp Γ glimit) o FMap F (limit (isLimit (climit comp (FIA Γ))) (obj a) (NIA Γ a t)) ] ] + comm1 = let open ≈-Reasoning (C) in begin + FMap G (limit (isLimit (climit comp (FIA Γ))) (obj a) (NIA Γ a t)) o hom a + ≈⟨ {!!} ⟩ + limit (isLimit (LimitC comp Γ glimit )) (FObj F ( limit-c comp (FIA Γ))) (tu comp Γ ) o FMap F (limit (isLimit (climit comp (FIA Γ))) (obj a) (NIA Γ a t)) + ≈⟨⟩ + hom (commaLimit comp Γ glimit) o FMap F (limit (isLimit (climit comp (FIA Γ))) (obj a) (NIA Γ a t)) + ∎ + +comma-t0f=t : { I : Category c₁ c₂ ℓ } → ( comp : Complete A I) → ( Γ : Functor I CommaCategory ) + → ( glimit : LimitPreserve A I C G ) (a : CommaObj) → ( t : NTrans I CommaCategory (K CommaCategory I a) Γ ) (i : Obj I ) + → CommaCategory [ CommaCategory [ TMap (commaNat comp Γ glimit) i o comma-a0 comp Γ glimit a t ] ≈ TMap t i ] +comma-t0f=t {I} comp Γ glimit a t i = let open ≈-Reasoning (A) in begin + TMap ( limit-u comp (FIA Γ ) ) i o limit (isLimit ( climit comp (FIA Γ) ) ) (obj a ) (NIA {I} Γ a t ) + ≈⟨ t0f=t (isLimit ( climit comp (FIA Γ) ) ) ⟩ + TMap (NIA {I} Γ a t ) i + ∎ + + +comma-uniqueness : { I : Category c₁ c₂ ℓ } → ( comp : Complete A I) → ( Γ : Functor I CommaCategory ) + → ( glimit : LimitPreserve A I C G ) (a : CommaObj) → ( t : NTrans I CommaCategory (K CommaCategory I a) Γ ) + → ( f : Hom CommaCategory a (commaLimit comp Γ glimit)) + → ( ∀ { i : Obj I } → CommaCategory [ CommaCategory [ TMap ( commaNat { I} comp Γ glimit ) i o f ] ≈ TMap t i ] ) + → CommaCategory [ comma-a0 comp Γ glimit a t ≈ f ] +comma-uniqueness {I} comp Γ glimit a t f t=f = let open ≈-Reasoning (A) in begin + limit (isLimit ( climit comp (FIA Γ) ) ) (obj a ) (NIA {I} Γ a t ) + ≈⟨ limit-uniqueness (isLimit ( climit comp (FIA Γ) ) ) (arrow f) t=f ⟩ + arrow f + ∎ + hasLimit : { I : Category c₁ c₂ ℓ } → ( comp : Complete A I ) → ( glimit : LimitPreserve A I C G ) @@ -148,8 +193,8 @@ a0 = commaLimit {I} comp Γ glimit ; t0 = commaNat { I} comp Γ glimit ; isLimit = record { - limit = λ a t → {!!} ; - t0f=t = λ {a t i } → {!!} ; - limit-uniqueness = λ {a} {t} f t=f → {!!} + limit = λ a t → comma-a0 comp Γ glimit a t ; + t0f=t = λ {a t i } → comma-t0f=t comp Γ glimit a t i ; + limit-uniqueness = λ {a} {t} f t=f → comma-uniqueness {I} comp Γ glimit a t f t=f } }