changeset 490:1a42f06e7ae1

commaNat done
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Mon, 13 Mar 2017 09:51:44 +0900
parents 75a60ceb55af
children 04da2c458d44
files freyd1.agda
diffstat 1 files changed, 4 insertions(+), 7 deletions(-) [+]
line wrap: on
line diff
--- a/freyd1.agda	Sun Mar 12 22:10:54 2017 +0900
+++ b/freyd1.agda	Mon Mar 13 09:51:44 2017 +0900
@@ -46,9 +46,6 @@
 FICG : { I : Category c₁ c₂ ℓ } →  ( Γ : Functor I CommaCategory )  → Functor I C
 FICG {I} Γ = G  ○  (FIA Γ)
 
-FICF : { I : Category c₁ c₂ ℓ } →  ( Γ : Functor I CommaCategory )  → Functor I C
-FICF {I} Γ = F  ○  (FIA Γ)
-
 open LimitPreserve
 
 LimitC : { I : Category c₁ c₂ ℓ } → ( comp : Complete A I ) 
@@ -136,10 +133,10 @@
        comm2 : {a b : Obj I} {f : Hom I a b} →
           CommaCategory [ CommaCategory [ FMap Γ f o record { arrow = TMap (limit-u comp (FIA Γ)) a ; comm = comm1 a } ]
           ≈ CommaCategory [ record { arrow = TMap (limit-u comp (FIA Γ)) b ; comm = comm1 b } o FMap (K CommaCategory I (commaLimit comp Γ glimit)) f ] ]
-       comm2 {a} {b} {f} =  let  open ≈-Reasoning (CommaCategory) in begin
-             FMap Γ f o record { arrow = TMap (limit-u comp (FIA Γ)) a ; comm = comm1 a } 
-         ≈⟨ {!!} ⟩
-             record { arrow = TMap (limit-u comp (FIA Γ)) b ; comm = comm1 b } o FMap (K CommaCategory I (commaLimit comp Γ glimit)) f 
+       comm2 {a} {b} {f} =  let  open ≈-Reasoning (A) in begin
+              FMap (FIA Γ) f  o TMap (limit-u comp (FIA Γ)) a 
+         ≈⟨ IsNTrans.commute (isNTrans (limit-u comp (FIA Γ)))   ⟩
+              TMap (limit-u comp (FIA Γ)) b  o FMap (K A I (limit-c comp (FIA Γ))) f