Mercurial > hg > Members > kono > Proof > category
changeset 878:0793d9adbbdd
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 10 Apr 2020 23:07:00 +0900 |
parents | 66dfc4f80ba3 |
children | 73bce40fd1c1 |
files | CCCGraph1.agda |
diffstat | 1 files changed, 15 insertions(+), 18 deletions(-) [+] |
line wrap: on
line diff
--- a/CCCGraph1.agda Fri Apr 10 09:21:54 2020 +0900 +++ b/CCCGraph1.agda Fri Apr 10 23:07:00 2020 +0900 @@ -102,34 +102,31 @@ isEquivalence = record {refl = refl ; trans = trans ; sym = sym } ; identityL = λ {a b f} → cong (λ k → eval k ) (identityL {a} {b} {f}); identityR = λ {a b f} → cong (λ k → eval k ) (identityR {a} {b} {f}); - o-resp-≈ = λ {a b c f g h i} → o-resp-≈-e {a} {b} {c} {f} {g} {h} {i} ; + o-resp-≈ = λ {a b c f g h i} → ore {a} {b} {c} f g h i ; associative = λ{a b c d f g h } → cong (λ k → eval k ) (associative f g h ) } } where - o-resp-≈-e : {A B C : Objs} {f g : Arrows A B} {h i : Arrows B C} → + ore : {A B C : Objs} (f g : Arrows A B) (h i : Arrows B C) → eval f ≡ eval g → eval h ≡ eval i → eval (h ・ f) ≡ eval (i ・ g) - o-resp-≈-e f=g h=i = {!!} + ore f g (id a) (id a) f=g refl = cong (λ k → id a ・ k) f=g + ore f g (id a) (iv x < i1 , i2 >) f=g h=i = {!!} + ore f g (id a) (iv x (iv i1 i2)) f=g h=i = {!!} + ore f g (○ a) (○ a) f=g h=i = refl + ore f g (○ a) (iv x i) f=g h=i = {!!} + ore f g < h1 , h2 > < i1 , i2 > f=g h=i = cong₂ (λ j k → < j , k >) (ore f g h1 i1 f=g {!!}) (ore f g h2 i2 f=g {!!}) + ore f g < h1 , h2 > (iv x i) f=g h=i = {!!} + ore f g (iv x h) (id a) f=g h=i = {!!} + ore f g (iv x h) (○ a) f=g h=i = {!!} + ore f g (iv x h) < i , i₁ > f=g h=i = {!!} + ore f g (iv x h) (iv y i) f=g h=i = {!!} fmap : {A B : Obj PL} → Hom PL A B → Hom PL A B - fmap (id a) = id _ - fmap (○ a) = ○ a - fmap < f , g > = < fmap f , fmap g > - fmap (iv (arrow x) g) = iv (arrow x) (fmap g) - fmap (iv π (id _)) = {!!} - fmap (iv π < g , g₁ >) = fmap g - fmap (iv π (iv f g)) = {!!} - fmap (iv π' (id _)) = {!!} - fmap (iv π' < g , g₁ >) = fmap g₁ - fmap (iv π' (iv f g)) = {!!} - fmap (iv ε (id _)) = {!!} - fmap (iv ε < f , g >) = {!!} - fmap (iv ε (iv f g)) = {!!} - fmap (iv (f *) g) = {!!} + fmap f = {!!} PLCCC : Functor PL PL PLCCC = record { FObj = λ x → x - ; FMap = {!!} + ; FMap = fmap ; isFunctor = record { identity = {!!} ; distr = {!!}