Mercurial > hg > Members > kono > Proof > category
changeset 873:0b5fb015009c
join
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 09 Apr 2020 09:47:00 +0900 |
parents | bfe0215593b9 |
children | 484f19f16712 |
files | CCCGraph1.agda |
diffstat | 1 files changed, 18 insertions(+), 100 deletions(-) [+] |
line wrap: on
line diff
--- a/CCCGraph1.agda Thu Apr 09 07:54:18 2020 +0900 +++ b/CCCGraph1.agda Thu Apr 09 09:47:00 2020 +0900 @@ -68,77 +68,32 @@ refl-<r> refl = refl _・_ : {a b c : Objs } (f : Arrows b c ) → (g : Arrows a b) → Arrows a c - id a ・ g = g - ○ a ・ g = ○ _ - < f , g > ・ h = < f ・ h , g ・ h > - iv f (id _) ・ h = iv f h - iv π < g , g₁ > ・ h = g ・ h - iv π' < g , g₁ > ・ h = g₁ ・ h - iv ε < g , g₁ > ・ h = iv ε < g ・ h , g₁ ・ h > - iv (f *) < g , g₁ > ・ h = iv (f *) < g ・ h , g₁ ・ h > - iv f ( (○ a)) ・ g = iv f ( ○ _ ) - iv x y ・ id a = iv x y - iv f (iv f₁ g) ・ h with iv f₁ g ・ h - (iv f (iv f₁ g) ・ h) | id a = iv f (id a) - (iv f (iv f₁ g) ・ h) | ○ a = iv f (○ a) - (iv π (iv f₁ g) ・ h) | < t , t₁ > = t - (iv π' (iv f₁ g) ・ h) | < t , t₁ > = t₁ - (iv ε (iv f₁ g) ・ h) | < t , t₁ > = iv ε < t , t₁ > - (iv (f *) (iv f₁ g) ・ h) | < t , t₁ > = iv (f *) < t , t₁ > - (iv f (iv f₁ g) ・ h) | iv f₂ t = iv f (iv f₂ t) + f ・ h with eval f + ... | id a = eval h + ... | ○ a = ○ _ + ... | < f1 , g > = < f1 ・ h , g ・ h > + ... | iv f1 (id _) = iv f1 h + ... | iv π < g , g₁ > = ? + ... | iv π' < g , g₁ > = {!!} -- g₁ ・ h + ... | iv ε < g , g₁ > = {!!} -- iv ε < g ・ h , g₁ ・ h > + ... | iv (x *) < g , g₁ > = {!!} -- iv (x *) < g ・ h , g₁ ・ h > + ... | iv x ( (○ a)) = iv x ( ○ _ ) + ... | iv x f1 = {!!} _==_ : {a b : Objs } → ( x y : Arrows a b ) → Set (c₁ ⊔ c₂) _==_ {a} {b} x y = eval x ≡ eval y identityR : {A B : Objs} {f : Arrows A B} → (f ・ id A) == f - identityR {a} {.a} {id a} = refl - identityR {a} {⊤} {○ a} = refl - identityR {_} {_} {< f , f₁ >} = cong₂ (λ j k → < j , k > ) (identityR {_} {_} {f} ) (identityR {_} {_} {f₁}) - identityR {_} {_} {iv f (id a)} = refl - identityR {_} {_} {iv f (○ a)} = refl - identityR {_} {_} {iv π < g , g₁ >} = identityR {_} {_} {g} - identityR {_} {_} {iv π' < g , g₁ >} = identityR {_} {_} {g₁} - identityR {_} {_} {iv ε < f , f₁ >} = cong₂ (λ j k → iv ε < j , k > ) (identityR {_} {_} {f} ) (identityR {_} {_} {f₁}) - identityR {_} {_} {iv (x *) < f , f₁ >} = cong₂ (λ j k → iv (x *) < j , k > ) (identityR {_} {_} {f} ) (identityR {_} {_} {f₁}) - identityR {_} {_} {iv f (iv g h)} = refl + identityR = {!!} + + distr-e : {a b c : Objs } ( f : Arrows b c ) ( g : Arrows a b ) → eval ( f ・ g ) ≡ (eval f ・ eval g) + distr-e = {!!} open import Data.Empty open import Relation.Nullary open import Relation.Binary.HeterogeneousEquality as HE using (_≅_;refl) - std-iv : {a b c d : Objs} (x : Arrow c d) (y : Arrow b c ) (f : Arrows a b) - → ( {b1 b2 : Objs } → {g : Arrows a b1 } {h : Arrows a b2 } → ¬ (eval f) ≅ < g , h > ) - → eval (iv x ( iv y f ) ) ≡ iv x ( eval (iv y f ) ) - std-iv x y (id a) _ = refl - std-iv x y (○ a) _ = refl - std-iv x y < f , f₁ > ne = ⊥-elim (ne refl) - std-iv x y (iv z f) ne with eval (iv z f) - std-iv x y (iv z f) ne | id a = refl - std-iv x y (iv z f) ne | ○ a = refl - std-iv x y (iv z f) ne | < t , t₁ > = ⊥-elim (ne refl) - std-iv (arrow x) _ (iv z f) ne | iv z1 t = refl - std-iv π y (iv z f) ne | iv z1 t = refl - std-iv π' y (iv z f) ne | iv z1 t = refl - std-iv ε y (iv z f) ne | iv z1 t = refl - std-iv (x *) y (iv z f) ne | iv z1 t = refl - - std-iv' : {a b c : Objs} (y : Arrow b c ) (f : Arrows a b) - → ( {b1 b2 : Objs } → {g : Arrows a b1 } {h : Arrows a b2 } → ¬ (eval f) ≅ < g , h > ) - → eval ( iv y f ) ≡ iv y (eval f ) - std-iv' y (id a) ne = refl - std-iv' y (○ a) ne = refl - std-iv' y < f , f₁ > ne = ⊥-elim (ne refl) - std-iv' y (iv f z) ne with eval (iv f z) - std-iv' y (iv f z) ne | id a = refl - std-iv' y (iv f z) ne | ○ a = refl - std-iv' y (iv f z) ne | < t , t₁ > = ⊥-elim (ne refl) - std-iv' (arrow x) (iv f z) ne | iv f₁ t = refl - std-iv' π (iv f z) ne | iv f₁ t = refl - std-iv' π' (iv f z) ne | iv f₁ t = refl - std-iv' ε (iv f z) ne | iv f₁ t = refl - std-iv' (y *) (iv f z) ne | iv f₁ t = refl - idem-eval : {a b : Objs } (f : Arrows a b ) → eval (eval f) ≡ eval f idem-eval (id a) = refl idem-eval (○ a) = refl @@ -162,17 +117,7 @@ -- lemma = std-iv f f₁ t {!!} assoc-iv : {a b c d : Objs} (x : Arrow c d) (f : Arrows b c) (g : Arrows a b ) → eval (iv x (f ・ g)) ≡ eval (iv x f ・ g) - assoc-iv x (id a) g = refl - assoc-iv x (○ a) g = refl - assoc-iv π < f , f₁ > g = refl - assoc-iv π' < f , f₁ > g = refl - assoc-iv ε < f , f₁ > g = refl - assoc-iv (x *) < f , f₁ > g = refl - assoc-iv x (iv f g) h = begin - eval (iv x (iv f g ・ h)) - ≡⟨ {!!} ⟩ - eval (iv x (iv f g) ・ h) - ∎ where open ≡-Reasoning + assoc-iv = {!!} ==←≡ : {A B : Objs} {f g : Arrows A B} → f ≡ g → f == g @@ -194,37 +139,10 @@ } } where identityL : {A B : Objs} {f : Arrows A B} → (id B ・ f) == f - identityL {_} {_} {id a} = refl - identityL {_} {_} {○ a} = refl - identityL {a} {b} {< f , f₁ >} = cong₂ (λ j k → < j , k > ) (identityL {_} {_} {f}) (identityL {_} {_} {f₁}) - identityL {_} {_} {iv f f₁} = refl + identityL = {!!} associative : {a b c d : Objs} (f : Arrows c d) (g : Arrows b c) (h : Arrows a b) → (f ・ (g ・ h)) == ((f ・ g) ・ h) - associative (id a) g h = refl - associative (○ a) g h = refl - associative (< f , f1 > ) g h = cong₂ ( λ j k → < j , k > ) (associative f g h) (associative f1 g h) - associative {a} (iv π < f , f1 > ) g h = associative f g h - associative {a} (iv π' < f , f1 > ) g h = associative f1 g h - associative {a} (iv ε < f , f1 > ) g h = cong ( λ k → iv ε k ) ( associative < f , f1 > g h ) - associative {a} (iv (x *) < f , f1 > ) g h = cong ( λ k → iv (x *) k ) ( associative < f , f1 > g h ) - associative {a} (iv x (id _)) g h = begin - eval (iv x (id _) ・ (g ・ h)) - ≡⟨⟩ - eval (iv x (g ・ h)) - ≡⟨ assoc-iv x g h ⟩ - eval (iv x g ・ h) - ≡⟨⟩ - eval ((iv x (id _) ・ g) ・ h) - ∎ where open ≡-Reasoning - associative {a} (iv x (○ _)) g h = refl - associative {a} (iv x (iv y f)) g h = begin - eval (iv x (iv y f) ・ (g ・ h)) - ≡⟨ sym (assoc-iv x (iv y f) ( g ・ h)) ⟩ - eval (iv x ((iv y f) ・ (g ・ h))) - ≡⟨ {!!} ⟩ - eval ((iv x (iv y f) ・ g) ・ h) - ∎ where open ≡-Reasoning - -- cong ( λ k → iv x k ) (associative f g h) + associative = {!!} o-resp-≈ : {A B C : Objs} {f g : Arrows A B} {h i : Arrows B C} → f == g → h == i → (h ・ f) == (i ・ g) o-resp-≈ f=g h=i = {!!}