changeset 872:bfe0215593b9

decidablity of < f , g > is required
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Thu, 09 Apr 2020 07:54:18 +0900
parents 4d50d51e9410
children 0b5fb015009c
files CCCGraph1.agda
diffstat 1 files changed, 10 insertions(+), 10 deletions(-) [+]
line wrap: on
line diff
--- a/CCCGraph1.agda	Wed Apr 08 17:49:57 2020 +0900
+++ b/CCCGraph1.agda	Thu Apr 09 07:54:18 2020 +0900
@@ -68,17 +68,17 @@
    refl-<r> refl = refl
 
    _・_ :  {a b c : Objs } (f : Arrows b c ) → (g : Arrows a b) → Arrows a c
-   id a ・ g = eval g
+   id a ・ g = g
    ○ a ・ g = ○ _
    < f , g > ・  h = <  f ・ h  ,  g ・ h  >
-   iv f (id _) ・ h = eval ( iv f h )
+   iv f (id _) ・ h = iv f h 
    iv π < g , g₁ > ・  h = g ・ h
    iv π' < g , g₁ > ・  h = g₁ ・ h
    iv ε < g , g₁ > ・  h = iv ε < g ・ h , g₁ ・ h >
    iv (f *) < g , g₁ > ・ h = iv (f *) < g ・ h , g₁ ・ h > 
    iv f ( (○ a)) ・ g = iv f ( ○ _ )
-   iv x y ・ id a = eval (iv x y)
-   iv f (iv f₁ g) ・ h with eval (iv f₁ g ・ h )
+   iv x y ・ id a = iv x y
+   iv f (iv f₁ g) ・ h with iv f₁ g ・ h 
    (iv f (iv f₁ g) ・ h) | id a = iv f (id a)
    (iv f (iv f₁ g) ・ h) | ○ a = iv f (○ a)
    (iv π (iv f₁ g) ・ h) | < t , t₁ > = t
@@ -100,7 +100,7 @@
    identityR {_} {_} {iv π' < g , g₁ >} = identityR {_} {_} {g₁} 
    identityR {_} {_} {iv ε < f , f₁ >} = cong₂ (λ j k → iv ε < j , k > ) (identityR {_} {_} {f} ) (identityR  {_} {_} {f₁})
    identityR {_} {_} {iv (x *) < f , f₁ >} = cong₂ (λ j k → iv (x *) < j , k > ) (identityR {_} {_} {f} ) (identityR  {_} {_} {f₁})
-   identityR {_} {_} {iv f (iv g h)} = {!!}
+   identityR {_} {_} {iv f (iv g h)} = refl
 
    open import Data.Empty 
    open import Relation.Nullary 
@@ -162,7 +162,7 @@
    --   lemma =  std-iv f f₁ t {!!}
 
    assoc-iv : {a b c d : Objs} (x : Arrow c d) (f : Arrows b c) (g : Arrows a b ) → eval (iv x (f ・ g)) ≡ eval (iv x f ・ g)
-   assoc-iv x (id a) g = {!!}
+   assoc-iv x (id a) g = refl
    assoc-iv x (○ a) g = refl
    assoc-iv π < f , f₁ > g = refl
    assoc-iv π' < f , f₁ > g = refl
@@ -197,10 +197,10 @@
                identityL {_} {_} {id a} = refl
                identityL {_} {_} {○ a} = refl
                identityL {a} {b} {< f , f₁ >} = cong₂ (λ j k → < j , k > ) (identityL {_} {_} {f}) (identityL {_} {_} {f₁})
-               identityL {_} {_} {iv f f₁} = {!!}
+               identityL {_} {_} {iv f f₁} = refl
                associative : {a b c d : Objs} (f : Arrows c d) (g : Arrows b c) (h : Arrows a b) →
                             (f ・ (g ・ h)) == ((f ・ g) ・ h)
-               associative (id a) g h = {!!}
+               associative (id a) g h = refl
                associative (○ a) g h = refl
                associative (< f , f1 > ) g h = cong₂ ( λ j k → < j , k > ) (associative f g h) (associative f1 g h)
                associative {a} (iv π < f , f1 > ) g h = associative f g h
@@ -209,11 +209,11 @@
                associative {a} (iv (x *) < f , f1 > ) g h = cong ( λ k → iv (x *) k ) ( associative  < f , f1 >  g h )
                associative {a} (iv x (id _)) g h =  begin
                        eval (iv x (id _) ・ (g ・ h))
-                    ≡⟨ {!!} ⟩
+                    ≡⟨⟩
                        eval (iv x (g ・ h))
                     ≡⟨ assoc-iv x g h ⟩
                        eval (iv x g ・ h)
-                    ≡⟨ {!!} ⟩
+                    ≡⟨⟩
                        eval ((iv x (id _) ・ g) ・ h)
                     ∎  where open ≡-Reasoning
                associative {a} (iv x (○ _)) g h =  refl