Mercurial > hg > Members > kono > Proof > category
changeset 52:0fc0dbda7b55
nat-ε proved
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 23 Jul 2013 16:18:21 +0900 |
parents | adc6bd3c9270 |
children | b4530a807918 |
files | universal-mapping.agda |
diffstat | 1 files changed, 20 insertions(+), 8 deletions(-) [+] |
line wrap: on
line diff
--- a/universal-mapping.agda Tue Jul 23 16:01:25 2013 +0900 +++ b/universal-mapping.agda Tue Jul 23 16:18:21 2013 +0900 @@ -18,7 +18,7 @@ field universalMapping : {a' : Obj A} { b' : Obj B } -> { f : Hom A a' (FObj U b') } -> A [ A [ FMap U ( f * ) o η a' ] ≈ f ] - uniquness : (a' : Obj A) ( b' : Obj B ) -> { f : Hom A a' (FObj U b') } -> { g : Hom B (F a') b' } -> + uniquness : {a' : Obj A} { b' : Obj B } -> { f : Hom A a' (FObj U b') } -> { g : Hom B (F a') b' } -> A [ A [ FMap U g o η a' ] ≈ f ] -> B [ f * ≈ g ] record UniversalMapping {c₁ c₂ ℓ c₁' c₂' ℓ' : Level} (A : Category c₁ c₂ ℓ) (B : Category c₁' c₂' ℓ') @@ -102,9 +102,9 @@ A [ A [ FMap U g o TMap η a ] ≈ f ] -> B [ (FMap F (A [ FMap U g o TMap η a ] )) ≈ FMap F f ] lemma1 a b f g k = IsFunctor.≈-cong (isFunctor F) k - uniqness : (a' : Obj A) ( b' : Obj B ) -> { f : Hom A a' (FObj U b') } -> { g : Hom B (FObj F a') b'} -> + uniqness : {a' : Obj A} { b' : Obj B } -> { f : Hom A a' (FObj U b') } -> { g : Hom B (FObj F a') b'} -> A [ A [ FMap U g o TMap η a' ] ≈ f ] -> B [ solution f ≈ g ] - uniqness a b {f} {g} k = let open ≈-Reasoning (B) in + uniqness {a} {b} {f} {g} k = let open ≈-Reasoning (B) in begin solution f ≈⟨⟩ @@ -160,7 +160,7 @@ η a o id a ∎ lemma-id : {a : Obj A} → B [ ( (_* um) (A [ (η a) o (id1 A a)] )) ≈ (id1 B (F a)) ] - lemma-id {a} = ( IsUniversalMapping.uniquness ( isUniversalMapping um ) ) a (F a) lemma-id1 + lemma-id {a} = ( IsUniversalMapping.uniquness ( isUniversalMapping um ) ) lemma-id1 lemma-cong2 : (a b : Obj A) (f g : Hom A a b) → A [ f ≈ g ] → A [ A [ FMap U ((_* um) (A [ η b o g ]) ) o η a ] ≈ A [ η b o f ] ] lemma-cong2 a b f g eq = let open ≈-Reasoning (A) in @@ -172,7 +172,7 @@ η b o f ∎ lemma-cong1 : (a b : Obj A) (f g : Hom A a b) → A [ f ≈ g ] → B [ (_* um) (A [ η b o f ] ) ≈ (_* um) (A [ η b o g ]) ] - lemma-cong1 a b f g eq = ( IsUniversalMapping.uniquness ( isUniversalMapping um ) ) a (F b) ( lemma-cong2 a b f g eq ) + lemma-cong1 a b f g eq = ( IsUniversalMapping.uniquness ( isUniversalMapping um ) ) ( lemma-cong2 a b f g eq ) lemma-cong : {a b : Obj A} {f g : Hom A a b} → A [ f ≈ g ] → B [ myFMap f ≈ myFMap g ] lemma-cong {a} {b} {f} {g} eq = lemma-cong1 a b f g eq lemma-distr2 : (a b c : Obj A) (f : Hom A a b) (g : Hom A b c) → @@ -195,7 +195,7 @@ ∎ lemma-distr1 : (a b c : Obj A) (f : Hom A a b) (g : Hom A b c) → B [ (_* um) (A [ η c o A [ g o f ] ]) ≈ (B [(_* um) (A [ η c o g ]) o (_* um)( A [ η b o f ]) ] )] - lemma-distr1 a b c f g = ( IsUniversalMapping.uniquness ( isUniversalMapping um ) a (F c)) (lemma-distr2 a b c f g ) + lemma-distr1 a b c f g = ( IsUniversalMapping.uniquness ( isUniversalMapping um )) (lemma-distr2 a b c f g ) lemma-distr : {a b c : Obj A} {f : Hom A a b} {g : Hom A b c} → B [ myFMap (A [ g o f ]) ≈ (B [ myFMap g o myFMap f ] )] lemma-distr {a} {b} {c} {f} {g} = lemma-distr1 a b c f g myIsFunctor : IsFunctor A B F myFMap @@ -266,6 +266,18 @@ ≈⟨ sym idR ⟩ FMap U f o id (FObj U a) ∎ + lemma-nat2 : (a b : Obj B) (f : Hom B a b ) -> A [ A [ FMap U ( B [ f o ((um *) (id1 A (FObj U a ))) ] ) o η (FObj U a) ] + ≈ A [ FMap U f o id1 A (FObj U a) ] ] + lemma-nat2 a b f = let open ≈-Reasoning (A) in + begin + FMap U ( B [ f o ((um *) (id1 A (FObj U a ))) ]) o η (FObj U a) + ≈⟨ car ( IsFunctor.distr ( isFunctor U ) ) ⟩ + (FMap U f o FMap U ((um *) (id1 A (FObj U a )))) o η (FObj U a) + ≈⟨ sym assoc ⟩ + FMap U f o ( FMap U ((um *) (id1 A (FObj U a ))) o η (FObj U a) ) + ≈⟨ cdr ( IsUniversalMapping.universalMapping ( isUniversalMapping um)) ⟩ + FMap U f o id (FObj U a ) + ∎ naturality : {a b : Obj B} {f : Hom B a b } → B [ B [ f o (ε a) ] ≈ B [(ε b) o (FMap F' (FMap U f)) ] ] naturality {a} {b} {f} = let open ≈-Reasoning (B) in @@ -275,9 +287,9 @@ ε b o ((_* um) (A [ η (FObj U b) o (FMap U f) ])) ≈⟨⟩ ((_* um) ( id1 A (FObj U b))) o ((_* um) (A [ η (FObj U b) o (FMap U f) ])) - ≈⟨ sym ( ( IsUniversalMapping.uniquness ( isUniversalMapping um ) (FObj U a) b ) (lemma-nat1 a b f)) ⟩ + ≈⟨ sym ( ( IsUniversalMapping.uniquness ( isUniversalMapping um ) (lemma-nat1 a b f))) ⟩ (_* um) ( A [ FMap U f o id1 A (FObj U a) ] ) - ≈⟨ {!!} ⟩ + ≈⟨ (IsUniversalMapping.uniquness ( isUniversalMapping um ) (lemma-nat2 a b f)) ⟩ f o ((_* um) ( id1 A (FObj U a))) ≈⟨⟩ f o (ε a)