Mercurial > hg > Members > kono > Proof > category
changeset 839:111ee96c09ab
...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 02 Apr 2020 09:15:52 +0900 |
parents | be4b8e70fa8e |
children | f9167bc017cd |
files | CCCGraph1.agda |
diffstat | 1 files changed, 9 insertions(+), 9 deletions(-) [+] |
line wrap: on
line diff
--- a/CCCGraph1.agda Thu Apr 02 08:43:50 2020 +0900 +++ b/CCCGraph1.agda Thu Apr 02 09:15:52 2020 +0900 @@ -32,10 +32,10 @@ iv : {b c d : Objs } ( f : Arrow d c ) ( g : Arrows b d ) → Arrows b c -- cas iv _・_ : {a b c : Objs } (f : Arrows b c ) → (g : Arrows a b) → Arrows a c - _・_ {a} {b} {⊤} _ _ = iv (○ a) (id a) id a ・ g = g < f , g > ・ h = < f ・ h , g ・ h > iv f (id _) ・ h = iv f h + iv (○ a) g ・ h = iv (○ _) (id _) iv π < g , g₁ > ・ h = g ・ h iv π' < g , g₁ > ・ h = g₁ ・ h iv ε < g , g₁ > ・ h = iv ε < g ・ h , g₁ ・ h > @@ -58,19 +58,19 @@ } } where identityL : {A B : Objs} {f : Arrows A B} → (id B ・ f) ≡ f - identityL {_} {_} {id a} = {!!} - identityL {a} {b} {< f , f₁ >} = {!!} - identityL {_} {_} {iv f f₁} = {!!} + identityL {_} {_} {id a} = refl + identityL {a} {b} {< f , f₁ >} = refl + identityL {_} {_} {iv f f₁} = refl identityR : {A B : Objs} {f : Arrows A B} → (f ・ id A) ≡ f - identityR {a} {_} {id a} = {!!} - identityR {a} {b} {< f , g >} = {!!} -- cong ( λ k → iv x k ) ( identityR {_} {_} {f} ) + identityR {a} {_} {id a} = refl + identityR {a} {b} {< f , g >} = cong₂ ( λ j k → < j , k > ) ( identityR {_} {_} {f} ) ( identityR {_} {_} {g} ) identityR {a} {b} {iv x f} = {!!} -- cong ( λ k → iv x k ) ( identityR {_} {_} {f} ) o-resp-≈ : {A B C : Objs} {f g : Arrows A B} {h i : Arrows B C} → f ≡ g → h ≡ i → (h ・ f) ≡ (i ・ g) o-resp-≈ refl refl = refl associative : {a b c d : Objs} (f : Arrows c d) (g : Arrows b c) (h : Arrows a b) → (f ・ (g ・ h)) ≡ ((f ・ g) ・ h) - associative (id a) g h = {!!} - associative (< f , f1 > ) g h = {!!} - associative (iv x f) g h = {!!} -- cong ( λ k → iv x k ) ( associative f g h ) + associative (id a) g h = refl + associative (< f , f1 > ) g h = cong₂ ( λ j k → < j , k > ) (associative f g h) (associative f1 g h) + associative (iv x f) g h = ? -- cong ( λ k → iv x k ) ( associative f g h )