changeset 571:143de0e3eb60

fix
author Shinji KONO <kono@ie.u-ryukyu.ac.jp>
date Mon, 24 Apr 2017 21:08:57 +0900
parents 3d6d8fea3e09
children 46e417754601
files SetsCompleteness.agda
diffstat 1 files changed, 5 insertions(+), 5 deletions(-) [+]
line wrap: on
line diff
--- a/SetsCompleteness.agda	Mon Apr 24 20:44:21 2017 +0900
+++ b/SetsCompleteness.agda	Mon Apr 24 21:08:57 2017 +0900
@@ -210,7 +210,6 @@
                   open  import  Relation.Binary.PropositionalEquality
                   open ≡-Reasoning
 
-
 Cone : {  c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I :  Set  c₁ ) ( s : Small C I )  ( Γ : Functor C (Sets  {c₁} ) )   
     → NTrans C Sets (K Sets C (slim (ΓObj s Γ) (ΓMap s Γ) )) Γ
 Cone C I s  Γ =  record {
@@ -224,7 +223,7 @@
              ≡⟨⟩
                    FMap Γ f (snmap (equ (slequ se (λ x → x))) a)
              ≡⟨  ≡cong ( λ g → FMap Γ g (snmap (equ (slequ se (λ x → x))) a))  (sym ( hom-iso s  ) ) ⟩
-                   FMap Γ  (hom← s ( hom→ s f))  (snmap (equ (slequ se {a} {a} (λ x → x))) a)
+                   FMap Γ  (hom← s ( hom→ s f))  (snmap (equ {_} {_} {_} {_} {_} (slequ se {a} {a} (λ x → x))) a)
              ≡⟨ ≡cong ( λ g →  FMap Γ  (hom← s ( hom→ s f)) g )  ( lemma-equ C I s Γ  )   ⟩
                    FMap Γ  (hom← s ( hom→ s f))  (snmap (equ (slequ se (hom→ s f ))) a)
              ≡⟨  fe=ge0 ( slequ se (hom→ s f ) ) ⟩
@@ -260,7 +259,8 @@
               uniquness2 : {a : Obj Sets} {t : NTrans C Sets (K Sets C a) Γ} {f : Hom Sets a (slim (ΓObj s Γ) (ΓMap s Γ) )} 
                      →  ( i j : Obj C  ) →
                     ({i  : Obj C} → Sets [ Sets [ TMap (Cone C I s Γ) i o f ] ≈ TMap t i ]) →  (f' : I → I ) →  (x : a ) 
-                     →  equ (elem (record { snmap = λ i₁ → TMap t i₁ x }) (limit2 a t {i} {j} f' x)) ≡ equ (slequ (f x) f')
+                     →  equ {_} {_} {slobj (f x) j }  {{!!}} {{!!}}
+                         (elem (record { snmap = λ i₁ → TMap t i₁ x }) (limit2 a t {i} {j} f' x)) ≡ equ (slequ (f x) f')
               uniquness2 {a} {t} {f} i j cif=t f' x = begin
                   record { snmap = λ i₁ → TMap t i₁ x }
                 ≡⟨   ≡cong ( λ g → record { snmap = λ i → g i  } ) (  extensionality Sets  ( λ  i  →  sym (  ≡cong ( λ e → e x ) cif=t ) ) )  ⟩
@@ -277,13 +277,13 @@
               uniquness1 {a} {t} {f} cif=t =  extensionality Sets  ( λ  x  →  begin
                   limit1 a t x
                 ≡⟨⟩
-                   record { slequ = λ {i} {j} f → elem ( record { snmap = λ i → TMap t i x }  ) ( limit2 a t f x ) }
+                   record { slequ = λ {i} {j} f' → elem ( record { snmap = λ i → TMap t i x }  ) ( limit2 a t f' x ) }
                 ≡⟨ ≡cong ( λ e → record { slequ =  λ {i} {j} f' → e i j f' x } ) (
                         extensionality Sets  ( λ  i  →
                            extensionality Sets  ( λ  j  →
                                extensionality Sets  ( λ  f'  →
                                    extensionality Sets  ( λ  x  → 
-                  elm-cong (  elem ( record { snmap = λ i → TMap t i x }  ) ( limit2 a t f' x )) (slequ (f x) f' ) (uniquness2 i j cif=t f' x ) )
+                  elm-cong (  elem ( record { snmap = λ i → TMap t i x }  ) ( limit2 a t f' x )) (slequ (f x) f' ) (uniquness2 {a} {t} {f} i j cif=t f' x ) )
                            )))
                      ) ⟩
                    record { slequ = λ {i} {j} f' → slequ (f x ) f' }