Mercurial > hg > Members > kono > Proof > category
changeset 529:18aea9cb0fdb
fix
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 28 Mar 2017 21:36:03 +0900 |
parents | 531547cf3b92 |
children | 89af55191ec6 |
files | SetsCompleteness.agda |
diffstat | 1 files changed, 11 insertions(+), 3 deletions(-) [+] |
line wrap: on
line diff
--- a/SetsCompleteness.agda Tue Mar 28 18:18:38 2017 +0900 +++ b/SetsCompleteness.agda Tue Mar 28 21:36:03 2017 +0900 @@ -194,13 +194,21 @@ e = λ x → record { pi1 = λ j → slim-obj x j } proj : (i : Obj C ) → ( prod : iproduct I (λ j → ΓObj s Γ j )) → FObj Γ i proj i prod = iid ( pi1 prod ( small→ s i ) ) + comm2 : {a b : Obj C} {f : Hom C a b} → ( x : a0 ) → (Sets [ FMap Γ f o Sets [ proj a o e ] ]) x ≡ (Sets [ proj b o e ]) x + comm2 {a} {b} {f} x = begin + (FMap Γ f ) ( ( proj a o e ) x ) + ≡⟨⟩ + (FMap Γ f ) ( iid ( slim-obj x (small→ s a) )) + ≡⟨ {!!} ⟩ + iid ( slim-obj x ( small→ s b ) ) + ∎ where + open import Relation.Binary.PropositionalEquality + open ≡-Reasoning comm1 : {a b : Obj C} {f : Hom C a b} → Sets [ Sets [ FMap Γ f o Sets [ proj a o e ] ] ≈ Sets [ Sets [ proj b o e ] o FMap (K Sets C (slim (ΓObj s Γ) (ΓMap s Γ))) f ] ] comm1 {a} {b} {f} = begin Sets [ FMap Γ f o Sets [ proj a o e ] ] - ≈⟨ assoc ⟩ - Sets [ Sets [ FMap Γ f o proj a ] o e ] - ≈⟨ {!!} ⟩ + ≈⟨ extensionality Sets ( λ x → comm2 x ) ⟩ Sets [ proj b o e ] ≈↑⟨ idR ⟩ Sets [ Sets [ proj b o e ] o id1 Sets a0 ]