Mercurial > hg > Members > kono > Proof > category
changeset 530:89af55191ec6
on going ...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 28 Mar 2017 22:10:52 +0900 |
parents | 18aea9cb0fdb |
children | 66cad3cb3a66 |
files | SetsCompleteness.agda |
diffstat | 1 files changed, 21 insertions(+), 2 deletions(-) [+] |
line wrap: on
line diff
--- a/SetsCompleteness.agda Tue Mar 28 21:36:03 2017 +0900 +++ b/SetsCompleteness.agda Tue Mar 28 22:10:52 2017 +0900 @@ -169,9 +169,27 @@ ( smap : { i j : I } → (f : I → I )→ sobj i → sobj j ) : Set c₂ where field slim-obj : ( i : I ) → sobj i + slim-equ : {i j : I} ( f g : I → I ) → sequ I I f g open slim +open import HomReasoning + +open NTrans + +SetsNat : { c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I : Set c₁ ) ( small : Small C I ) ( Γ : Functor C (Sets {c₁} ) ) + → (lim p : Obj Sets ) → (e : Hom Sets lim p ) + → NTrans C Sets (K Sets C lim) Γ +SetsNat C I s Γ lim p e = record { + TMap = λ i → Sets [ proj i o ? ] + ; isNTrans = record { commute = ? } + } where + proj : ? + proj = ? + comm1 : ? + comm1 = ? + + SetsLimit : { c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I : Set c₁ ) ( small : Small C I ) ( Γ : Functor C (Sets {c₁} ) ) → Limit Sets C Γ SetsLimit { c₂} C I s Γ = record { @@ -181,7 +199,7 @@ ; isNTrans = record { commute = comm1 } } ; isLimit = record { - limit = {!!} + limit = limit1 ; t0f=t = {!!} ; limit-uniqueness = {!!} } @@ -194,6 +212,8 @@ e = λ x → record { pi1 = λ j → slim-obj x j } proj : (i : Obj C ) → ( prod : iproduct I (λ j → ΓObj s Γ j )) → FObj Γ i proj i prod = iid ( pi1 prod ( small→ s i ) ) + limit1 : (a : Obj Sets) → NTrans C Sets (K Sets C a) Γ → Hom Sets a (slim (ΓObj s Γ) (ΓMap s Γ)) + limit1 = {!!} comm2 : {a b : Obj C} {f : Hom C a b} → ( x : a0 ) → (Sets [ FMap Γ f o Sets [ proj a o e ] ]) x ≡ (Sets [ proj b o e ]) x comm2 {a} {b} {f} x = begin (FMap Γ f ) ( ( proj a o e ) x ) @@ -215,7 +235,6 @@ ≈⟨⟩ Sets [ Sets [ proj b o e ] o FMap (K Sets C (slim (ΓObj s Γ) (ΓMap s Γ))) f ] ∎ where - open import HomReasoning open ≈-Reasoning Sets