Mercurial > hg > Members > kono > Proof > category
changeset 531:66cad3cb3a66
on going ...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Tue, 28 Mar 2017 22:25:07 +0900 |
parents | 89af55191ec6 |
children | d5d7163f2a1d |
files | SetsCompleteness.agda |
diffstat | 1 files changed, 34 insertions(+), 42 deletions(-) [+] |
line wrap: on
line diff
--- a/SetsCompleteness.agda Tue Mar 28 22:10:52 2017 +0900 +++ b/SetsCompleteness.agda Tue Mar 28 22:25:07 2017 +0900 @@ -177,27 +177,47 @@ open NTrans -SetsNat : { c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I : Set c₁ ) ( small : Small C I ) ( Γ : Functor C (Sets {c₁} ) ) - → (lim p : Obj Sets ) → (e : Hom Sets lim p ) - → NTrans C Sets (K Sets C lim) Γ -SetsNat C I s Γ lim p e = record { - TMap = λ i → Sets [ proj i o ? ] - ; isNTrans = record { commute = ? } +SetsNat : { c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I : Set c₁ ) ( s : Small C I ) ( Γ : Functor C (Sets {c₁} ) ) + → NTrans C Sets (K Sets C (slim (ΓObj s Γ) (ΓMap s Γ)) ) Γ +SetsNat C I s Γ = record { + TMap = λ i → Sets [ proj i o e ] + ; isNTrans = record { commute = comm1 } } where - proj : ? - proj = ? - comm1 : ? - comm1 = ? + e : Hom Sets (slim (ΓObj s Γ) (ΓMap s Γ)) (iproduct I (λ j → ΓObj s Γ j)) + e = λ x → record { pi1 = λ j → slim-obj x j } + iid : {i : Obj C } → Hom Sets (FObj Γ (small← s (small→ s i))) (FObj Γ i) + iid {i} = FMap Γ ( small-iso s ) + proj : (i : Obj C ) → ( prod : iproduct I (λ j → ΓObj s Γ j )) → FObj Γ i + proj i prod = iid ( pi1 prod ( small→ s i ) ) + comm2 : {a b : Obj C} {f : Hom C a b} → ( x : slim (ΓObj s Γ) (ΓMap s Γ) ) → (Sets [ FMap Γ f o Sets [ proj a o e ] ]) x ≡ (Sets [ proj b o e ]) x + comm2 {a} {b} {f} x = begin + (FMap Γ f ) ( ( proj a o e ) x ) + ≡⟨⟩ + (FMap Γ f ) ( iid ( slim-obj x (small→ s a) )) + ≡⟨ {!!} ⟩ + iid ( slim-obj x ( small→ s b ) ) + ∎ where + open import Relation.Binary.PropositionalEquality + open ≡-Reasoning + comm1 : {a b : Obj C} {f : Hom C a b} → Sets [ Sets [ FMap Γ f o Sets [ proj a o e ] ] ≈ + Sets [ Sets [ proj b o e ] o FMap (K Sets C (slim (ΓObj s Γ) (ΓMap s Γ))) f ] ] + comm1 {a} {b} {f} = begin + Sets [ FMap Γ f o Sets [ proj a o e ] ] + ≈⟨ extensionality Sets ( λ x → comm2 x ) ⟩ + Sets [ proj b o e ] + ≈↑⟨ idR ⟩ + Sets [ Sets [ proj b o e ] o id1 Sets (slim (ΓObj s Γ) (ΓMap s Γ)) ] + ≈⟨⟩ + Sets [ Sets [ proj b o e ] o FMap (K Sets C (slim (ΓObj s Γ) (ΓMap s Γ))) f ] + ∎ where + open ≈-Reasoning Sets SetsLimit : { c₁ c₂ ℓ : Level} ( C : Category c₁ c₂ ℓ ) ( I : Set c₁ ) ( small : Small C I ) ( Γ : Functor C (Sets {c₁} ) ) → Limit Sets C Γ SetsLimit { c₂} C I s Γ = record { a0 = slim (ΓObj s Γ) (ΓMap s Γ) - ; t0 = record { - TMap = λ i → Sets [ proj i o e ] - ; isNTrans = record { commute = comm1 } - } + ; t0 = SetsNat C I s Γ ; isLimit = record { limit = limit1 ; t0f=t = {!!} @@ -206,35 +226,7 @@ } where a0 : Obj Sets a0 = slim (ΓObj s Γ) (ΓMap s Γ) - iid : {i : Obj C } → Hom Sets (FObj Γ (small← s (small→ s i))) (FObj Γ i) - iid {i} = FMap Γ ( small-iso s ) e : Hom Sets a0 (iproduct I (λ j → ΓObj s Γ j)) e = λ x → record { pi1 = λ j → slim-obj x j } - proj : (i : Obj C ) → ( prod : iproduct I (λ j → ΓObj s Γ j )) → FObj Γ i - proj i prod = iid ( pi1 prod ( small→ s i ) ) limit1 : (a : Obj Sets) → NTrans C Sets (K Sets C a) Γ → Hom Sets a (slim (ΓObj s Γ) (ΓMap s Γ)) limit1 = {!!} - comm2 : {a b : Obj C} {f : Hom C a b} → ( x : a0 ) → (Sets [ FMap Γ f o Sets [ proj a o e ] ]) x ≡ (Sets [ proj b o e ]) x - comm2 {a} {b} {f} x = begin - (FMap Γ f ) ( ( proj a o e ) x ) - ≡⟨⟩ - (FMap Γ f ) ( iid ( slim-obj x (small→ s a) )) - ≡⟨ {!!} ⟩ - iid ( slim-obj x ( small→ s b ) ) - ∎ where - open import Relation.Binary.PropositionalEquality - open ≡-Reasoning - comm1 : {a b : Obj C} {f : Hom C a b} → Sets [ Sets [ FMap Γ f o Sets [ proj a o e ] ] ≈ - Sets [ Sets [ proj b o e ] o FMap (K Sets C (slim (ΓObj s Γ) (ΓMap s Γ))) f ] ] - comm1 {a} {b} {f} = begin - Sets [ FMap Γ f o Sets [ proj a o e ] ] - ≈⟨ extensionality Sets ( λ x → comm2 x ) ⟩ - Sets [ proj b o e ] - ≈↑⟨ idR ⟩ - Sets [ Sets [ proj b o e ] o id1 Sets a0 ] - ≈⟨⟩ - Sets [ Sets [ proj b o e ] o FMap (K Sets C (slim (ΓObj s Γ) (ΓMap s Γ))) f ] - ∎ where - open ≈-Reasoning Sets - -