Mercurial > hg > Members > kono > Proof > category
changeset 274:1b651faa2391
adjoint2limit problems are written
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sun, 22 Sep 2013 22:43:25 +0900 |
parents | fae4bb967d76 |
children | 62e84bea7b29 |
files | pullback.agda |
diffstat | 1 files changed, 24 insertions(+), 14 deletions(-) [+] |
line wrap: on
line diff
--- a/pullback.agda Sun Sep 22 21:35:20 2013 +0900 +++ b/pullback.agda Sun Sep 22 22:43:25 2013 +0900 @@ -248,8 +248,8 @@ ( lim : ( Γ : Functor I A ) → { a0 : Obj A } { t0 : NTrans I A ( K I a0 ) Γ } → Limit I Γ a0 t0 ) → ( a0 : ( b : Functor I A ) → Obj A ) ( t0 : ( b : Functor I A ) → NTrans I A ( K I (a0 b) ) b ) → coUniversalMapping A ( A ^ I ) (KI I) (λ b → A0 (lim b {a0 b} {t0 b} ) ) ( λ b → T0 ( lim b {a0 b} {t0 b} ) ) -limit2adjoint lim a0 t0 = record { - _*' = λ {b} {a} k → limit (lim b {a0 b} {t0 b} ) a k ; +limit2adjoint lim a0 t0 = record { -- F U ε + _*' = λ {b} {a} k → limit (lim b {a0 b} {t0 b} ) a k ; -- η iscoUniversalMapping = record { couniversalMapping = λ{ b a f} → couniversalMapping1 {b} {a} {f} ; couniquness = couniquness2 @@ -274,25 +274,35 @@ ∎ open import Category.Cat - adjoint2limit : ( U : Functor (A ^ I) A ) ( η : NTrans A A identityFunctor ( U ○ (KI I) ) ) ( ε : NTrans (A ^ I) (A ^ I) ( (KI I) ○ U ) identityFunctor ) ( adj : Adjunction A (A ^ I) U (KI I) η ε ) → - ( Γ : Functor I A ) → { a0 : Obj A } { t0 : NTrans I A ( K I a0 ) Γ } → Limit I Γ a0 t0 -adjoint2limit U η ε adj Γ {a0} {t0} = record { + ( Γ : Functor I A ) → Limit I Γ (FObj U Γ) (TMap ε Γ) +adjoint2limit U η ε adj Γ = record { limit = λ a t → limit1 a t ; - t0f=t = λ {a t i } → t0f=t1 {a} {t} {i} ; + t0f=t = λ {a t i } → t0f=t1 {a} {t} {i} ; limit-uniqueness = λ {a} {t} {f} t=f → limit-uniqueness1 {a} {t} {f} t=f } where - limit1 : ( a : Obj A ) → ( t : NTrans I A ( K I a ) Γ ) → Hom A a a0 - limit1 a t = ? - t0f=t1 : { a : Obj A } → { t : NTrans I A ( K I a ) Γ } → ∀ { i : Obj I } → - A [ A [ TMap t0 i o limit1 a t ] ≈ TMap t i ] - t0f=t1 = {!!} - limit-uniqueness1 : { a : Obj A } → { t : NTrans I A ( K I a ) Γ } → { f : Hom A a a0 } → ( ∀ { i : Obj I } → - A [ A [ TMap t0 i o f ] ≈ TMap t i ] ) → A [ limit1 a t ≈ f ] - limit-uniqueness1 = {!!} + limit1 : (a : Obj A) → NTrans I A (K I a) Γ → Hom A a (FObj U Γ) + limit1 a t = A [ FMap U t o TMap η a ] + t0f=t1 : {a : Obj A} {t : NTrans I A (K I a) Γ} {i : Obj I} → + A [ A [ TMap (TMap ε Γ) i o limit1 a t ] ≈ TMap t i ] + t0f=t1 {a} {t} {i} = let open ≈-Reasoning (A) in begin + TMap (TMap ε Γ) i o limit1 a t + ≈⟨⟩ + TMap (TMap ε Γ) i o ( FMap U t o TMap η a ) + ≈⟨ {!!} ⟩ + TMap t i + ∎ + limit-uniqueness1 : { a : Obj A } → { t : NTrans I A ( K I a ) Γ } → { f : Hom A a (FObj U Γ)} + → ( ∀ { i : Obj I } → A [ A [ TMap (TMap ε Γ) i o f ] ≈ TMap t i ] ) → A [ limit1 a t ≈ f ] + limit-uniqueness1 {a} {t} {f} εf=t = let open ≈-Reasoning (A) in begin + FMap U t o TMap η a + ≈⟨ {!!} ⟩ + f + ∎ +