Mercurial > hg > Members > kono > Proof > category
changeset 110:1db2b43a1a36
resp and assoc
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 31 Jul 2013 21:34:44 +0900 |
parents | ca1de7cbdf6a |
children | c670d0e6b1e2 |
files | em-category.agda |
diffstat | 1 files changed, 2 insertions(+), 19 deletions(-) [+] |
line wrap: on
line diff
--- a/em-category.agda Wed Jul 31 21:31:23 2013 +0900 +++ b/em-category.agda Wed Jul 31 21:34:44 2013 +0900 @@ -140,23 +140,6 @@ (g : EMHom {x} {y} {φ} {φ'} {α'} a b ) -> Set ℓ _≗_ {_} {_} {_} {_} {α} {α'} f g = A [ α ≈ α' ] -Lemma-EM3 : {x y : Obj A} - {φ : Hom A (FObj T x) x} - {φ' : Hom A (FObj T y) y} - {α : Hom A x y} - (a : EMObj {x} {φ} ) - (b : EMObj {y} {φ'} ) - (f : EMHom {x} {y} {φ} {φ'} {α} a b) -> (EM-id ∙ f) ≗ f -Lemma-EM3 {_} {y} {_} {_} {α} a b f = let open ≈-Reasoning (A) in - begin - EMap (EM-id ∙ f) - ≈⟨⟩ - id1 A y o α - ≈⟨ idL ⟩ - α - ≈⟨⟩ - EMap f - ∎ -- isEilenberg-MooreCategory : IsCategory EMObj EMHom _≗_ _∙_ EM-id isEilenberg-MooreCategory = record { isEquivalence = isEquivalence @@ -181,10 +164,10 @@ EMidR {_} {_} {f} = idR EMo-resp : {a b c : EMObj} -> {f g : EMHom a b } → {h i : EMHom b c } → f ≗ g → h ≗ i → (h ∙ f) ≗ (i ∙ g) - EMo-resp {a} {b} {c} {f} {g} {h} {i} eq-fg eq-hi = {!!} -- Lemma10 {a} {b} {c} (EMap f) (EMap g) (EMap h) (EMap i) eq-fg eq-hi + EMo-resp {a} {b} {c} {f} {g} {h} {i} = ( IsCategory.o-resp-≈ (Category.isCategory A) ) EMassoc : {a b c d : EMObj} -> {f : EMHom c d } → {g : EMHom b c } → {h : EMHom a b } → (f ∙ (g ∙ h)) ≗ ((f ∙ g) ∙ h) - EMassoc {_} {_} {_} {_} {f} {g} {h} = {!!} -- Lemma9 (EMap f) (EMap g) (EMap h) + EMassoc {_} {_} {_} {_} {f} {g} {h} = ( IsCategory.associative (Category.isCategory A) ) -- Eilenberg-MooreCategory : Category (c₁ ⊔ c₂ ⊔ ℓ) (c₁ ⊔ c₂ ⊔ ℓ) ℓ -- Eilenberg-MooreCategory =