Mercurial > hg > Members > kono > Proof > category
changeset 109:ca1de7cbdf6a
idL, idR
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 31 Jul 2013 21:31:23 +0900 |
parents | e763efd30868 |
children | 1db2b43a1a36 |
files | em-category.agda |
diffstat | 1 files changed, 23 insertions(+), 4 deletions(-) [+] |
line wrap: on
line diff
--- a/em-category.agda Wed Jul 31 21:02:32 2013 +0900 +++ b/em-category.agda Wed Jul 31 21:31:23 2013 +0900 @@ -140,6 +140,24 @@ (g : EMHom {x} {y} {φ} {φ'} {α'} a b ) -> Set ℓ _≗_ {_} {_} {_} {_} {α} {α'} f g = A [ α ≈ α' ] +Lemma-EM3 : {x y : Obj A} + {φ : Hom A (FObj T x) x} + {φ' : Hom A (FObj T y) y} + {α : Hom A x y} + (a : EMObj {x} {φ} ) + (b : EMObj {y} {φ'} ) + (f : EMHom {x} {y} {φ} {φ'} {α} a b) -> (EM-id ∙ f) ≗ f +Lemma-EM3 {_} {y} {_} {_} {α} a b f = let open ≈-Reasoning (A) in + begin + EMap (EM-id ∙ f) + ≈⟨⟩ + id1 A y o α + ≈⟨ idL ⟩ + α + ≈⟨⟩ + EMap f + ∎ + -- isEilenberg-MooreCategory : IsCategory EMObj EMHom _≗_ _∙_ EM-id isEilenberg-MooreCategory = record { isEquivalence = isEquivalence ; identityL = EMidL @@ -149,17 +167,18 @@ } where open ≈-Reasoning (A) - isEquivalence : { a b : EMObj } -> - IsEquivalence {_} {_} {EMHom a b} _≗_ + isEquivalence : {x y : Obj A} {φ : Hom A (FObj T x) x} {φ' : Hom A (FObj T y) y} {α α' : Hom A x y} + {a : EMObj {x} {φ} } {b : EMObj {y} {φ'}} -> + IsEquivalence {_} {_} {EMHom {x} {y} {φ} {φ'} {α} a b } _≗_ isEquivalence {C} {D} = -- this is the same function as A's equivalence but has different types record { refl = refl-hom ; sym = sym ; trans = trans-hom } EMidL : {C D : EMObj} -> {f : EMHom C D} → (EM-id ∙ f) ≗ f - EMidL {_} {_} {f} = {!!} -- Lemma7 (EMap f) + EMidL {a} {b} {f} = idL EMidR : {C D : EMObj} -> {f : EMHom C D} → (f ∙ EM-id) ≗ f - EMidR {_} {_} {f} = {!!} -- Lemma8 (EMap f) + EMidR {_} {_} {f} = idR EMo-resp : {a b c : EMObj} -> {f g : EMHom a b } → {h i : EMHom b c } → f ≗ g → h ≗ i → (h ∙ f) ≗ (i ∙ g) EMo-resp {a} {b} {c} {f} {g} {h} {i} eq-fg eq-hi = {!!} -- Lemma10 {a} {b} {c} (EMap f) (EMap g) (EMap h) (EMap i) eq-fg eq-hi