Mercurial > hg > Members > kono > Proof > category
changeset 505:1f47d14533d0
on going ...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 17 Mar 2017 10:43:32 +0900 |
parents | b489f27317fb |
children | 817093714fd5 |
files | SetsCompleteness.agda |
diffstat | 1 files changed, 19 insertions(+), 11 deletions(-) [+] |
line wrap: on
line diff
--- a/SetsCompleteness.agda Fri Mar 17 10:25:57 2017 +0900 +++ b/SetsCompleteness.agda Fri Mar 17 10:43:32 2017 +0900 @@ -54,25 +54,33 @@ open Functor open NTrans -record Slimit { c₂ } ( Γobj : {I A : Set c₂ } → I → A ) ( Γmap : {I A : Set c₂ } → ( (f : I → I ) → A → A )) : Set c₂ where - field - s-u0 : {!!} +record Slimit { c₂ } ( ΓObj : Obj (Sets { c₂ }) → Obj (Sets { c₂ }) ) ( ΓMap : {A B : Obj Sets} → Hom Sets A B → Hom Sets (ΓObj A) ( ΓObj B )) + : Set c₂ where + -- field + -- tlimit : Obj Sets + -- tmap : (A : Obj Sets) → Hom Sets ? (ΓObj A) + -- tcommute : {a b : Obj Sets} {f : Hom Sets a b} → Sets [ Sets [ ΓMap f o tmap a ] ≈ Sets [ tmap b o id1 Sets tlimit ] ] open Slimit SetsLimit : { c₂ : Level} - ( ΓObj : {I A : Set c₂ } → I → A ) ( ΓMap : {I A : Set c₂ } → ( (f : I → I ) → A → A )) - ( ΓObj' : Obj Sets → Obj Sets ) ( ΓMap' : {A B : Obj Sets} → Hom Sets A B → Hom Sets (ΓObj' A) ( ΓObj' B )) - ( Γ : IsFunctor (Sets { c₂}) (Sets { c₂}) ΓObj' ΓMap' ) - → Limit Sets Sets ( record { FObj = ΓObj' ; FMap = ΓMap' ; isFunctor = Γ } ) -SetsLimit { c₂} ΓObj ΓMap ΓObj' ΓMap' Γ = record { - a0 = Slimit ΓObj ΓMap - ; t0 = s-u0 {!!} + ( ΓObj : Obj Sets → Obj Sets ) ( ΓMap : {A B : Obj Sets} → Hom Sets A B → Hom Sets (ΓObj A) ( ΓObj B )) + ( Γ : IsFunctor (Sets { c₂}) (Sets { c₂}) ΓObj ΓMap ) + → Limit Sets Sets ( record { FObj = ΓObj ; FMap = ΓMap ; isFunctor = Γ } ) +SetsLimit { c₂} ΓObj ΓMap Γ = record { + a0 = Slimit ΓObj ΓMap + ; t0 = record { TMap = tmap ; isNTrans = record { commute = tcommute } } ; isLimit = record { limit = {!!} ; t0f=t = {!!} ; limit-uniqueness = {!!} } - } + } where + tmap : (a : Obj Sets) → Hom Sets (Slimit ΓObj ΓMap) (ΓObj a) + tmap a _ = {!!} + tcommute : {a b : Obj Sets} {f : Hom Sets a b} → Sets [ Sets [ ΓMap f o tmap a ] ≈ Sets [ tmap b o id1 Sets (Slimit ΓObj ΓMap) ] ] + tcommute {a} {b} {f} = {!!} + +