Mercurial > hg > Members > kono > Proof > category
changeset 504:b489f27317fb
on going...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 17 Mar 2017 10:25:57 +0900 |
parents | bd33096c189b |
children | 1f47d14533d0 |
files | SetsCompleteness.agda |
diffstat | 1 files changed, 12 insertions(+), 11 deletions(-) [+] |
line wrap: on
line diff
--- a/SetsCompleteness.agda Fri Mar 17 09:25:46 2017 +0900 +++ b/SetsCompleteness.agda Fri Mar 17 10:25:57 2017 +0900 @@ -11,18 +11,18 @@ open import Relation.Binary.Core open import Function -record Σ {a b} (A : Set a) (B : A → Set b) : Set (a ⊔ b) where +record Σ {a} (A : Set a) (B : Set a) : Set a where constructor _,_ field proj₁ : A - proj₂ : B proj₁ + proj₂ : B open Σ public SetsProduct : { c₂ : Level} → CreateProduct ( Sets { c₂} ) SetsProduct { c₂ } = record { - product = λ a b → Σ a (λ _ → b) + product = λ a b → Σ a b ; π1 = λ a b → λ ab → (proj₁ ab) ; π2 = λ a b → λ ab → (proj₂ ab) ; isProduct = λ a b → record { @@ -54,18 +54,19 @@ open Functor open NTrans -record Slimit { c₂ : Level} { c₁' c₂' ℓ' : Level} ( I : Category c₁' c₂' ℓ' ) ( Γ : Functor I (Sets { c₂}) ) - : Set (suc ℓ' ⊔ (suc c₂' ⊔ (suc c₁' ⊔ suc (suc c₂)))) where +record Slimit { c₂ } ( Γobj : {I A : Set c₂ } → I → A ) ( Γmap : {I A : Set c₂ } → ( (f : I → I ) → A → A )) : Set c₂ where field - Carrier : Set c₂ - s-a0 : Carrier - s-u0 : NTrans I Sets ( K Sets I Carrier ) Γ + s-u0 : {!!} open Slimit -SetsLimit : { c₂ : Level} { c₁' c₂' ℓ' : Level} ( I : Category c₁' c₂' ℓ' ) ( Γ : Functor I (Sets { c₂}) ) → Limit Sets I Γ -SetsLimit { c₂} I Γ = record { - a0 = s-a0 {!!} -- ( Slimit I Γ ) +SetsLimit : { c₂ : Level} + ( ΓObj : {I A : Set c₂ } → I → A ) ( ΓMap : {I A : Set c₂ } → ( (f : I → I ) → A → A )) + ( ΓObj' : Obj Sets → Obj Sets ) ( ΓMap' : {A B : Obj Sets} → Hom Sets A B → Hom Sets (ΓObj' A) ( ΓObj' B )) + ( Γ : IsFunctor (Sets { c₂}) (Sets { c₂}) ΓObj' ΓMap' ) + → Limit Sets Sets ( record { FObj = ΓObj' ; FMap = ΓMap' ; isFunctor = Γ } ) +SetsLimit { c₂} ΓObj ΓMap ΓObj' ΓMap' Γ = record { + a0 = Slimit ΓObj ΓMap ; t0 = s-u0 {!!} ; isLimit = record { limit = {!!}