Mercurial > hg > Members > kono > Proof > category
changeset 290:1f897357ec6c
fix
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 25 Sep 2013 13:59:56 +0900 |
parents | 7dc163c026b7 |
children | c8e26650ddf9 |
files | pullback.agda |
diffstat | 1 files changed, 8 insertions(+), 10 deletions(-) [+] |
line wrap: on
line diff
--- a/pullback.agda Wed Sep 25 13:25:14 2013 +0900 +++ b/pullback.agda Wed Sep 25 13:59:56 2013 +0900 @@ -318,7 +318,7 @@ field product : {q : Obj A} → ( qi : (i : I) → Hom A q (ai i) ) → Hom A q p pif=q : {q : Obj A} → ( qi : (i : I) → Hom A q (ai i) ) → ∀ { i : I } → A [ A [ ( pi i ) o ( product qi ) ] ≈ (qi i) ] - -- special case of product ( qi = pi ) + -- special case of product ( qi = pi ) ( should b proved from pif=q ) pif=q1 : { i : I } → { qi : Hom A p (ai i) } → A [ pi i ≈ qi ] ip-uniqueness : {q : Obj A} { h : Hom A q p } → A [ product ( λ (i : I) → A [ (pi i) o h ] ) ≈ h ] ip-cong : {q : Obj A} → { qi : (i : I) → Hom A q (ai i) } → { qi' : (i : I) → Hom A q (ai i) } @@ -349,12 +349,10 @@ limit-ε : ( prod : (p : Obj A) ( ai : Obj I → Obj A ) ( pi : (i : Obj I) → Hom A p ( ai i ) ) → IProduct {c₁'} A (Obj I) p ai pi ) - ( eqa : {a b c : Obj A} → (e : Hom A c a ) → (f g : Hom A a b) → Equalizer A e f g ) - ( Γ : Functor I A ) → ( lim p : Obj A ) ( e : Hom A lim p ) ( proj : (i : Obj I ) → Hom A p (FObj Γ i) ) → NTrans I A (K I lim) Γ -limit-ε prod eqa Γ lim p e proj = record { +limit-ε prod lim p e proj = record { TMap = tmap ; isNTrans = record { commute = commute1 @@ -382,11 +380,11 @@ ( prod : (p : Obj A) ( ai : Obj I → Obj A ) ( pi : (i : Obj I) → Hom A p ( ai i ) ) → IProduct {c₁'} A (Obj I) p ai pi ) ( eqa : {a b c : Obj A} → (e : Hom A c a ) → (f g : Hom A a b) → Equalizer A e f g ) - ( Γ : Functor I A ) → ( lim p : Obj A ) -- limit to be made + ( lim p : Obj A ) -- limit to be made ( e : Hom A lim p ) -- existing of equalizer ( proj : (i : Obj I ) → Hom A p (FObj Γ i) ) -- existing of product ( projection actually ) - → Limit I Γ lim ( limit-ε prod eqa Γ lim p e proj ) -limit-from prod eqa Γ lim p e proj = record { + → Limit I Γ lim ( limit-ε prod lim p e proj ) +limit-from prod eqa lim p e proj = record { limit = λ a t → limit1 a t ; t0f=t = λ {a t i } → t0f=t1 {a} {t} {i} ; limit-uniqueness = λ {a} {t} {f} t=f → limit-uniqueness1 {a} {t} {f} t=f @@ -394,9 +392,9 @@ limit1 : (a : Obj A) → NTrans I A (K I a) Γ → Hom A a lim limit1 a t = let open ≈-Reasoning (A) in k (eqa e (id1 A p) (id1 A p )) (product ( prod p (FObj Γ) proj ) (TMap t) ) refl-hom t0f=t1 : {a : Obj A} {t : NTrans I A (K I a) Γ} {i : Obj I} → - A [ A [ TMap (limit-ε prod eqa Γ lim p e proj ) i o limit1 a t ] ≈ TMap t i ] + A [ A [ TMap (limit-ε prod lim p e proj ) i o limit1 a t ] ≈ TMap t i ] t0f=t1 {a} {t} {i} = let open ≈-Reasoning (A) in begin - TMap (limit-ε prod eqa Γ lim p e proj ) i o limit1 a t + TMap (limit-ε prod lim p e proj ) i o limit1 a t ≈⟨⟩ ( ( proj i ) o e ) o k (eqa e (id1 A p) (id1 A p )) (product ( prod p (FObj Γ) proj ) (TMap t) ) refl-hom ≈↑⟨ assoc ⟩ @@ -407,7 +405,7 @@ TMap t i ∎ limit-uniqueness1 : {a : Obj A} {t : NTrans I A (K I a) Γ} {f : Hom A a lim} - → ({i : Obj I} → A [ A [ TMap (limit-ε prod eqa Γ lim p e proj ) i o f ] ≈ TMap t i ]) → + → ({i : Obj I} → A [ A [ TMap (limit-ε prod lim p e proj ) i o f ] ≈ TMap t i ]) → A [ limit1 a t ≈ f ] limit-uniqueness1 {a} {t} {f} lim=t = let open ≈-Reasoning (A) in begin limit1 a t