Mercurial > hg > Members > kono > Proof > category
changeset 128:276f33602700
Comparison Functor all done.
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Fri, 02 Aug 2013 17:01:14 +0900 |
parents | 3e05417b0876 |
children | fdf89038556a |
files | category.ind comparison-em.agda comparison-functor.agda |
diffstat | 3 files changed, 56 insertions(+), 2 deletions(-) [+] |
line wrap: on
line diff
--- a/category.ind Fri Aug 02 10:06:15 2013 +0900 +++ b/category.ind Fri Aug 02 17:01:14 2013 +0900 @@ -1385,7 +1385,7 @@ \end{tikzcd} ---Vertial Compositon $ε・ε$ +--Vertcial Compositon $ε・ε$ $ ε・ε : FUFU -> 1B$
--- a/comparison-em.agda Fri Aug 02 10:06:15 2013 +0900 +++ b/comparison-em.agda Fri Aug 02 17:01:14 2013 +0900 @@ -133,3 +133,39 @@ EMap (emkmap g ∙ emkmap f) ∎ +Lemma-EM20 : { a b : Obj B} { f : Hom B a b } -> A [ FMap U^T ( FMap K^T f) ≈ FMap U^K f ] +Lemma-EM20 {a} {b} {f} = let open ≈-Reasoning (A) in + begin + FMap U^T ( FMap K^T f) + ≈⟨⟩ + FMap U^K f + ∎ + +-- Lemma-EM21 : { a : Obj B} -> FObj U^T ( FObj K^T a) = FObj U^K a + +Lemma-EM22 : { a b : Obj A} { f : Hom A a b } -> A [ EMap ( FMap K^T ( FMap F^K f) ) ≈ EMap ( FMap F^T f ) ] +Lemma-EM22 {a} {b} {f} = let open ≈-Reasoning (A) in + begin + EMap ( FMap K^T ( FMap F^K f) ) + ≈⟨⟩ + FMap U^K ( FMap F^K f) + ≈⟨⟩ + EMap ( FMap F^T f ) + ∎ + + +-- Lemma-EM23 : { a b : Obj A} -> ( FObj K^T ( FObj F^K f) ) = ( FObj F^T f ) + +-- Lemma-EM24 : {a : Obj A } {b : Obj B} -> A [ TMap η^K (FObj U^K b) ≈ TMap η^K a ] +-- Lemma-EM24 = ? + +Lemma-EM26 : {b : Obj B} -> A [ EMap (TMap ε^T ( FObj K^T b)) ≈ FMap U^K ( TMap ε^K b) ] +Lemma-EM26 {b} = let open ≈-Reasoning (A) in + begin + EMap (TMap ε^T ( FObj K^T b)) + ≈⟨⟩ + FMap U^K ( TMap ε^K b) + ∎ + + +
--- a/comparison-functor.agda Fri Aug 02 10:06:15 2013 +0900 +++ b/comparison-functor.agda Fri Aug 02 17:01:14 2013 +0900 @@ -180,7 +180,8 @@ id1 B (FObj F_K b) ∎ -Lemma-K4 : (b c : Obj A) (g : Hom A b (FObj T_K c)) -> B [ FMap K_T ( record { KMap = A [ (TMap η_K (FObj T_K c)) o g ] }) ≈ FMap F_K g ] +Lemma-K4 : (b c : Obj A) (g : Hom A b (FObj T_K c)) -> + B [ FMap K_T ( record { KMap = A [ (TMap η_K (FObj T_K c)) o g ] }) ≈ FMap F_K g ] Lemma-K4 b c g = let open ≈-Reasoning (B) in begin FMap K_T ( record { KMap = A [ (TMap η_K (FObj T_K c)) o g ] }) @@ -196,3 +197,20 @@ FMap F_K g ∎ +-- Lemma-K5 : (a : Obj A) -> FObj U_K ( FObj K_T a ) = U_T a + +Lemma-K6 : (b c : Obj A) (g : KHom b c) -> A [ FMap U_K ( FMap K_T g ) ≈ FMap U_T g ] +Lemma-K6 b c g = let open ≈-Reasoning (A) in + begin + FMap U_K ( FMap K_T g ) + ≈⟨⟩ + FMap U_K ( B [ TMap ε_K ( FObj F_K c ) o FMap F_K (KMap g) ] ) + ≈⟨ distr U_K ⟩ + FMap U_K ( TMap ε_K ( FObj F_K c )) o FMap U_K ( FMap F_K (KMap g) ) + ≈⟨⟩ + TMap μ_K c o FMap U_K ( FMap F_K (KMap g) ) + ≈⟨⟩ + FMap U_T g + ∎ + +