Mercurial > hg > Members > kono > Proof > category
changeset 354:2a83718f50a0
fix
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Thu, 02 Apr 2015 22:49:13 +0900 |
parents | d255a929815f |
children | 8fd085379380 |
files | limit-to.agda |
diffstat | 1 files changed, 26 insertions(+), 29 deletions(-) [+] |
line wrap: on
line diff
--- a/limit-to.agda Wed Apr 01 17:37:04 2015 +0900 +++ b/limit-to.agda Thu Apr 02 22:49:13 2015 +0900 @@ -20,41 +20,43 @@ --- ------> --- g -data _∨_ {c₁} (A B : Set c₁): Set c₁ where - or1 : A → A ∨ B - or2 : B → A ∨ B - - -record TwoSet {c₁} (A : Set c₁): Set (suc c₁) where - field - a0 : A - a1 : A - element : (x : A) → ( x ≡ a0) ∨ (x ≡ a1 ) - - -data Two {c₁} : Set c₁ where - t0 : Two - t1 : Two - infixr 40 _::_ data List {a} (A : Set a) : Set a where [] : List A _::_ : A -> List A -> List A --- record TwoCat {ℓ} (S : Sets {ℓ}) : Set ℓ where --- field --- twoSet : TwoSet S --- hom : TwoSet S → TwoSet S → Set _ + +postulate id-0 id-1 f g : Set c₂ -twocat : {c₁ c₂ ℓ : Level} → (id-0 id-1 f g : Set c₂) → Category c₁ _ ℓ -twocat {c₁} {c₂} {ℓ} id-0 id-1 f g = record { +data Two {c₁} : Set c₁ where + t0 : Two + t1 : Two + +record Two-Hom {c₁} (a : Two {c₁}) (b : Two {c₁}) : Set (c₁ ⊔ suc c₂ ⊔ ℓ) where + field + Map : Set c₂ + +hom : Two {c₁} → Two {c₁} → List (Set c₂) +hom t0 t0 = id-0 :: [] +hom t0 t1 = f :: g :: [] +hom t1 t0 = [] +hom t1 t1 = id-1 :: [] + +Two-id : {c₁ : Level} -> (a : Two {c₁}) -> Two-Hom {c₁} a a +Two-id {c₁} t0 = record { Map = id-0 } +Two-id {c₁} t1 = record { Map = id-1 } + +open Two-Hom + +twocat : {c₁ ℓ : Level} → Category c₁ _ ℓ +twocat {c₁} {ℓ} = record { Obj = Two {c₁} ; - Hom = λ a b → List (Set c₂) ; + Hom = λ a b → Two-Hom a b ; _o_ = {!!} ; _≈_ = {!!} ; - Id = {!!} ; + Id = \{a} -> Two-id a ; isCategory = record { isEquivalence = {!!} ; identityL = {!!} ; @@ -63,11 +65,6 @@ associative = {!!} } } where - hom : Two {c₁} → Two {c₁} → List (Set c₂) - hom t0 t0 = id-0 :: [] - hom t0 t1 = f :: g :: [] - hom t1 t0 = [] - hom t1 t1 = id-1 :: [] open Limit