Mercurial > hg > Members > kono > Proof > category
changeset 14:2b005ec775b4
not yet worked
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 08 Jul 2013 17:55:04 +0900 |
parents | 7fa1b11a097a |
children | 730a4a59a7bd |
files | nat.agda |
diffstat | 1 files changed, 26 insertions(+), 21 deletions(-) [+] |
line wrap: on
line diff
--- a/nat.agda Mon Jul 08 11:00:05 2013 +0900 +++ b/nat.agda Mon Jul 08 17:55:04 2013 +0900 @@ -149,39 +149,44 @@ infixr 2 _≈⟨_⟩_ infix 1 begin_ - data _IsRelatedTo_ {a b : Obj A } ( x y : Hom A a b ) : - Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where - relTo : (x≈y : Category._≈_ A x y ) → x IsRelatedTo y - lemma11 : {a c : Obj A} { x y : Hom A a c} -> x IsRelatedTo y - lemma11 = relTo ( IsCategory.identityL (Category.isCategory A) ) + data _IsRelatedTo_ {a} {A1 : Set ℓ} (x : A1) {b} {B : Set ℓ} (y : B) : + Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where + relTo : (x≈y : A [ x ≈ y ] ) → x IsRelatedTo y - begin_ : {a b : Obj A } { x y : Hom A a b} → + begin_ : ∀ {a} {A1 : Set a} {x : A1} {b} {B : Set b} {y : B} → x IsRelatedTo y → A [ x ≈ y ] begin relTo x≈y = x≈y - _≈⟨_⟩_ : {a b : Obj A } - ( x : Hom A a b ) → { y z : Hom A a b } → - A [ x ≈ y ] → y IsRelatedTo z → x IsRelatedTo z - _ ≈⟨ x≈y ⟩ relTo y≈z = relTo ( trans-hom x≈y y≈z ) + _≈⟨_⟩_ : ∀ {a} {A1 : Set a} (x : A1) {b} {B : Set b} {y : B} + {c} {C : Set c} {z : C} → + A [ x ≈ y ] → y IsRelatedTo z → x IsRelatedTo z + _ ≈⟨ x≈y ⟩ relTo y≈z = relTo (trans-hom x≈y y≈z) - _∎ : {a b : Obj A } (x : Hom A a b) → x IsRelatedTo x - _ ∎ = relTo ( refl-hom ) + _∎ : ∀ {a} {A1 : Set a} (x : A1) → x IsRelatedTo x + _∎ _ = relTo refl-hom + +-- hoge : {!!} -- {a b : Obj A } -> Rel ( Hom A a b ) (suc ℓ ) +-- hoge = IsCategory.identityL (Category.isCategory A) + +-- lemma11 : {a c : Obj A} { x : Hom A a c } {y : Hom A a c } -> x IsRelatedTo y +-- lemma11 = relTo ( IsCategory.identityL (Category.isCategory A) ) + Lemma61 : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) -> { a b : Obj A } { f : Hom A a b } -> A [ A [ (Id {_} {_} {_} {A} b) o f ] ≈ f ] -Lemma61 c = -- IsCategory.identityL (Category.isCategory c) - { a b : Obj c } - { g : Hom c a b } - -> let open ≈-Reasoning c in - begin - c [ (Id {_} {_} {_} {c} b) o g ] - ≈⟨ IsCategory.identityL (Category.isCategory c) ⟩ - g - ∎ +Lemma61 c = IsCategory.identityL (Category.isCategory c) +-- { a b : Obj c } +-- { g : Hom c a b } +-- -> let open ≈-Reasoning c in +-- begin +-- c [ (Id {_} {_} {_} {c} b) o g ] +-- ≈⟨ IsCategory.identityL (Category.isCategory c) ⟩ +-- g +-- ∎ open Kleisli Lemma7 : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) ->