Mercurial > hg > Members > kono > Proof > category
changeset 13:7fa1b11a097a
Reasoning on going...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Mon, 08 Jul 2013 11:00:05 +0900 |
parents | 72397d77c932 |
children | 2b005ec775b4 |
files | nat.agda |
diffstat | 1 files changed, 12 insertions(+), 12 deletions(-) [+] |
line wrap: on
line diff
--- a/nat.agda Sun Jul 07 20:20:51 2013 +0900 +++ b/nat.agda Mon Jul 08 11:00:05 2013 +0900 @@ -149,23 +149,23 @@ infixr 2 _≈⟨_⟩_ infix 1 begin_ - data IsRelatedTo {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) {a b : Obj A } ( x y : Hom A a b ) : + data _IsRelatedTo_ {a b : Obj A } ( x y : Hom A a b ) : Set (suc (c₁ ⊔ c₂ ⊔ ℓ )) where - relTo : (x≈y : Category._≈_ x y ) → IsRelatedTo A x y + relTo : (x≈y : Category._≈_ A x y ) → x IsRelatedTo y - lemma11 : {c₁ c₂ ℓ : Level} (A : Category c₁ c₂ ℓ) {a b : Obj A } ( x y : Hom A a b ) -> ? - lemma11 = \c -> relTo ( IsCategory.identityL (Category.isCategory c) ) + lemma11 : {a c : Obj A} { x y : Hom A a c} -> x IsRelatedTo y + lemma11 = relTo ( IsCategory.identityL (Category.isCategory A) ) - begin_ : {c₁ c₂ ℓ : Level} {A : Category c₁ c₂ ℓ} {a b : Obj A } { x y : Hom A a b} → - IsRelatedTo A x y → A [ x ≈ y ] + begin_ : {a b : Obj A } { x y : Hom A a b} → + x IsRelatedTo y → A [ x ≈ y ] begin relTo x≈y = x≈y _≈⟨_⟩_ : {a b : Obj A } ( x : Hom A a b ) → { y z : Hom A a b } → - A [ x ≈ y ] → IsRelatedTo A y z → IsRelatedTo A x z - a ≈⟨ x≈y ⟩ relTo y≈z = relTo ( trans-hom x≈y y≈z ) + A [ x ≈ y ] → y IsRelatedTo z → x IsRelatedTo z + _ ≈⟨ x≈y ⟩ relTo y≈z = relTo ( trans-hom x≈y y≈z ) - _∎ : {a b : Obj A } (x : Hom A a b) → IsRelatedTo A x x + _∎ : {a b : Obj A } (x : Hom A a b) → x IsRelatedTo x _ ∎ = relTo ( refl-hom ) @@ -175,12 +175,12 @@ -> A [ A [ (Id {_} {_} {_} {A} b) o f ] ≈ f ] Lemma61 c = -- IsCategory.identityL (Category.isCategory c) { a b : Obj c } - { f : Hom c a b } + { g : Hom c a b } -> let open ≈-Reasoning c in begin - c [ (Id {_} {_} {_} {c} b) o f ] + c [ (Id {_} {_} {_} {c} b) o g ] ≈⟨ IsCategory.identityL (Category.isCategory c) ⟩ - f + g ∎ open Kleisli