Mercurial > hg > Members > kono > Proof > category
changeset 182:346e8eb35ec3
contravariant continue ...
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Wed, 28 Aug 2013 17:00:49 +0900 |
parents | b58453d90db6 |
children | ea6fc610b480 |
files | yoneda.agda |
diffstat | 1 files changed, 15 insertions(+), 3 deletions(-) [+] |
line wrap: on
line diff
--- a/yoneda.agda Wed Aug 28 13:26:01 2013 +0900 +++ b/yoneda.agda Wed Aug 28 17:00:49 2013 +0900 @@ -20,8 +20,8 @@ postulate extensionality : Relation.Binary.PropositionalEquality.Extensionality c₂ c₂ -CF : (a : Obj A) → Functor A Sets -CF a = record { +CF' : (a : Obj A) → Functor A Sets +CF' a = record { FObj = λ b → Hom A a b ; FMap = λ {b c : Obj A } → λ ( f : Hom A b c ) → λ (g : Hom A a b ) → A [ f o g ] ; isFunctor = record { @@ -49,5 +49,17 @@ cong1 eq = extensionality ( λ x → ( ≈-≡ ( (IsCategory.o-resp-≈ ( Category.isCategory A )) ( IsEquivalence.refl (IsCategory.isEquivalence ( Category.isCategory A ))) eq ))) +open import Function - +CF : (a : Obj A) → Functor (Category.op A) Sets +CF a = record { + FObj = λ b → Hom (Category.op A) a b + ; FMap = λ {b c : Obj A } → λ ( f : Hom A c b ) → λ (g : Hom A b a ) → (Category.op A) [ f o g ] + ; isFunctor = record { + identity = \{b} → extensionality ( λ x → lemma-CF1 {b} x ) + ; distr = λ {a} {b} {c} {f} {g} → {!!} + ; ≈-cong = {!!} + } + } where + lemma-CF1 : {b : Obj A } → (x : Hom A b a) → (Category.op A) [ id1 A b o x ] ≡ x + lemma-CF1 {b} x = let open ≈-Reasoning (Category.op A) in ≈-≡ idL