Mercurial > hg > Members > kono > Proof > category
changeset 543:34f79fafbba4
fix
author | Shinji KONO <kono@ie.u-ryukyu.ac.jp> |
---|---|
date | Sat, 01 Apr 2017 15:18:14 +0900 |
parents | bc3802c5c8e4 |
children | 158aaded24b9 |
files | SetsCompleteness.agda |
diffstat | 1 files changed, 18 insertions(+), 20 deletions(-) [+] |
line wrap: on
line diff
--- a/SetsCompleteness.agda Fri Mar 31 17:44:53 2017 +0900 +++ b/SetsCompleteness.agda Sat Apr 01 15:18:14 2017 +0900 @@ -182,24 +182,24 @@ → f a b ≡ f a' b' ≡cong2 _ refl refl = refl -snat-cong : { c₂ : Level } { I OC : Set c₂ } { sobj : OC → Set c₂ } - { smap : { i j : OC } → (f : I )→ sobj i → sobj j } → - ( s t : snat sobj smap ) → - ( snmap s ≡ snmap t ) → s ≡ t -snat-cong {c₂} {I} s t smt=sms = begin - record { snmap = snmap s ; sncommute = λ f → sncommute s f } - -- ≡⟨ ≡cong2 ( λ sm ( sc : I → ? ≡ ? ) → record { snmap = sm ; sncommute = λ f → sc f } ) smt=sms {!!} ⟩ - ≡⟨ {!!} ⟩ - record { snmap = snmap t ; sncommute = λ f → sncommute t f } - ∎ where - open import Relation.Binary.PropositionalEquality - open ≡-Reasoning +snat-cong : { c : Level } { I OC : Set c } ( SObj : OC → Set c ) ( SMap : { i j : OC } → (f : I )→ SObj i → SObj j) + { s t : snat SObj SMap } + → (( i : OC ) → snmap s i ≡ snmap t i ) + → ( ( i j : OC ) ( f : I ) → SMap {i} {j} f ( snmap s i ) ≡ snmap s j ) + → ( ( i j : OC ) ( f : I ) → SMap {i} {j} f ( snmap t i ) ≡ snmap t j ) + → s ≡ t +snat-cong {_} {I} {OC} SO SM {s} {t} eq1 eq2 eq3 = ≡cong2 ( λ x y → record { snmap = λ i → x i ; sncommute = λ {i} {j} f → {!!} } ) + ( extensionality Sets ( λ i → eq1 i ) ) + ( extensionality Sets ( λ i → ( extensionality Sets ( λ j → ( extensionality Sets ( λ f → + irr1 i j f {!!} {!!})))))) + where + irr1 : ( i j : OC ) ( f : I ) → ( es et : SM f ( snmap s i ) ≡ snmap s j ) → es ≡ et + irr1 i j f es et = {!!} -snat1 : { c₂ : Level } { I OC : Set c₂ } { sobj : OC → Set c₂ } - { smap : { i j : OC } → (f : I )→ sobj i → sobj j } ( snmap0 : ( i : OC ) → sobj i ) - { sncommute0 : { i j : OC } → ( f : I ) → smap f ( snmap0 i ) ≡ snmap0 j } - → snat sobj smap -snat1 snmap0 { sncommute0} = record { snmap = snmap0 ; sncommute = sncommute0 } + +-- ( extensionality Sets ( λ i → eq1 i ) ) {!!} +-- (irr ( extensionality Sets ( λ i → ( extensionality Sets ( λ j → ( extensionality Sets ( λ f → eq2 i j f )))))) +-- ( extensionality Sets ( λ i → ( extensionality Sets ( λ j → ( extensionality Sets ( λ f → eq3 i j f ))))))) open import HomReasoning open NTrans @@ -261,9 +261,7 @@ limit1 a t x ≡⟨⟩ record { snmap = λ i → ( TMap t i ) x ; sncommute = λ f → comm2 t f } - ≡⟨ snat-cong ( record { snmap = λ i → ( TMap t i ) x ; sncommute = λ f → comm2 t f } ) - (record { snmap = λ i → snmap (f x ) i ; sncommute = sncommute (f x ) } ) - {!!} ⟩ + ≡⟨ snat-cong (ΓObj s Γ) (ΓMap s Γ) ? {!!} {!!} ⟩ record { snmap = λ i → snmap (f x ) i ; sncommute = sncommute (f x ) } ≡⟨⟩ f x